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Two counterintuitive phenomena are studied. (1) It is well known that a thermal electromagnetic
field has a Bose-Einstein (geometric) distribution of photons within a coherence volume. This
arises because of the photon clumping characteristic of a thermal Boson field. On the other hand,
the distribution of the number of atoms emitting photons through spontaneous emission must be
Poisson if emissions are truly independent. (2) The average time between atomic decays is finite,
being just the inverse of the total decay rate of the atoms. However, it is shown that in a coherence
volume or in a single mode of the resulting Gaussian electromagnetic field, the average photon
interarrival time is infinite. Hence, on average, an infinite length of time must pass before (V)
photons arrive in the field. These apparent paradoxes are discussed, showing how both arise from
random interference of Boson fields. The infinite waiting time is seen to be one manifestation of a
long-tailed distribution. Such distributions are increasingly important by virtue of their relation
to self-similarity and fractals, e.g., strange attractors in the description of deterministic chaos;
therefore, it is of interest to understand their counterintuitive properties and see how they arise

naturally even in more traditional analyses.
I. INTRODUCTION

Long-tailed distributions with infinite moments beyond
a given order occasionally arise in physical models. One
well-known example of such a distribution is the Lorentz
(Cauchy) distribution. Students sometimes feel it some-
what paradoxical that a distribution with infinite mean or
variance can have any physical significance. We show that
a long-tailed distribution arises as the probability density
function (pdf) for the time of arrival of photons in a coher-
ence volume or in a single mode of a linearly growing Gaus-
sian electromagnetic field. Such a field has a Bose-Einstein
(geometric) photon number distribution and may be gen-
erated by the spontaneous emission of excited atoms or
laser scattering from a rotating ground glass.' The distribu-
tion of photon interarrival times does not, in fact, possess
even a finite mean. On the other hand, the average number
of photons in the field is nonzero. In spontaneous emission,
(N') equals the average number of decayed atoms. In laser
light scattered from a rotating ground glass, (V) is propor-
tional to the integrated laser field intensity. In either case
(N') can be written as Ar. ,

The apparent paradox relating to infinite photon inter-
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arrival times is related to another puzzling fact. If sponta-
neous emissions by atoms are really independent events,
then the distribution of the number of decayed atoms must
be Poisson. How can this be reconciled with the well-
known Bose-Einstein photon distribution of thermal light?
We answer these questions by showing how both of these
phenomena can be understood physically as arising from
the random interference of boson fields. ‘

In Sec. II, we present a method for finding the distribu-
tion of the time until the first photon arrives and apply it to
a Poisson (independent emissions) process. Section III ap-
plies the method to the linearly growing Bose-Einstein dis-
tribution within a coherence volume of the field and shows
generally that the mean time between photon arrivals is
infinite. In Sec. IV, this apparent paradox is shown to be
simply a manifestation of a distribution having a very slow-
ly decreasing tail. By analyzing a simple, idealized distribu-
tion, the situation is clarified and the mathematical nature
of the apparent paradox is explained. A simple physical
model is presented in Sec. V, showing how random inter-
ference of boson fields leads to the long-tailed distributions
of photon interarrival times in a coherence volume.

- The distribution derived in Sec. III is of a type known as
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a hyperbolic distribution. Such distributions fall off asymp-
totically according to a power law. Because they are in-
creasingly useful by virtue of their relation to self-similar-
ity, scaling, and fractals, e.g., strange attractors in the
description of deterministic chaos, it is of interest to under-
stand the nature of their counterintuitive properties. Also,
it is instructive to see how they arise naturally even in more
traditional analyses. Their importance is discussed further
in Sec. VI, where the self-similar nature of the evolution of
thermal light is also explained.

IL. PHOTON INTERARRIVAL TIMES IN A
POISSON PROCESS

In order to fix notation and introduce the method of
analysis we first derive the average time between atomic
decays and the pdf of the time until the first decay given the
distribution of the number of decays at time #. This analysis
works backward compared to the usual analysis of the
Poisson process. We assume that the decay of each atom is
completely independent of all other atoms and the number
of excited atoms is held constant by a pumping process.
The probability distribution of N(t), the random variable
corresponding to the number of decayed atoms by time 7, is
Poisson: :

Pr[N(t) = nl=p, = (N)"exp(— (N ))/n, (1
with the average (or mean)
(N) =41, (2)

where A is the total rate of atomic decay.

A. General method

If the number of atomic decays by time ¢, N(z), is less
than n, it implies that the time of occurrence of the nth
decay is later than #; the same holds conversely. In other
words, the event’ [N(z) <n] is equivalent to the event
(T, >t), where T, is the random variable corresponding
to the time at which the nth atomic decay occurs. Hence,
the corresponding probabilities of these events are equal,
1.e.,

Pr(T,>t) = Pr{N(¢) <n]. (3)
The right-hand side of Eq. (3) is (almost) the cumulative
distribution function (CDF) for N; hence, we can write

n—1

1=0
Taking the first difference of Eq. (4) we have
Pe(T,>t) —Pr(T,_,>t)=p,_1. (5
Now, the average ((T')) of a random variable with pdf

[f(nl,

ry= [ (6)
0
and CDF [ F (1)] [i.e, Pr(T<8)],
F(t)=ff(t')dt', (7)
0

whose range is [0, 0 ], can be expressed as
ry=["t1-Fwla ®)
0

through integration by parts of Eq. (6). Hence, integrating
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Eq. (5) from 0— o0, we have

<Tn)_<Tn—1>=f pn—ldt' ‘ (9)
0 .

B. Application to the Poisson case

The integral on the right-hand side of Eq. (9) is easily
carried out using Egs. (1) and (2) and the definition of the
T function, yielding

<Tn_Tn—1>=<Tn>—<Tn—1>=I/A' (10)

The average time between decays is just the inverse decay
rate, as it should be. Note that we have used the linearity of
the averaging operation to write the average of the differ-
ence of two random variables as the difterence of their aver-
ages.

Using Eq. (5) with nequal to 1 we find 1 — F (1) for the
time until the first decay; hence,

F(t)=1—p,=1—exp(— A4 (11a)
and, differentiating with respect to time,
f(r) =Aexp( — At). (11b)

Equations (11) are the CDF and pdf, respectively, of a
negative exponential random variable. In fact, it is well
known that not just the time until the first decay, but all the
interdecay times are exponential random variables.

II1. APPLICATION TO THE BOSE-EINSTEIN
CASE

We now apply the method of analysis of Sec. II to the
generation of the thermal (Gaussian) field in a given co-
herence volume. In this case, the number of photons has
the distribution?

p, = (NY/(14+(N))"*! (12)

in terms of the average number of photons (). This is
known as a geometric or Bose-Einstein distribution. For
nonequilibrium situations such as the thermal field genera-
ted from spontaneous emission, in a linear laser amplifier
with gains equal to losses,* or for pseudothermal light pro-
duced by laser scattering from a rotating ground glass, the
average is given by (N ) = at. If there are m coherence vol-
umes in the field fed by spontaneous emission, thena = 4 /
m. Using Eq. (12) in Eq. (9), we have, for the average
interarrival time of photons in the field,

LY n—1
(Tn_Tn—l>=<Tn>_<Tn—l>=J E_t)—_dt
o (1+ap)”
(13

The integral in Eq. (13) is seen to be logarithmically diver-
gent for all #. In particular, the time until the first photon
arrives is, on average, infinite. Again, setting n equal to 1 in
Eq. (5), we obtain the CDF of the time until the first pho-
ton arrives [cf. Eq. (11)]:

F()=1—1/(1+ap). (14a)
The corresponding pdf is found by differentiation:
f) =a/(1 +an? (14b)

Equations (14) are an example of what is called a Pareto
distribution. Such distributions, falling off asymptotically
according to a power law, are termed hyperbolic. In gen-
eral, their moments beyond a given order are infinite. It is
easy to see that the distribution in Egs. (14) has infinite
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moments of all orders, beginning with the mean. -

~ We thus have an apparent paradox. On one hand, the
average number of photons at time ¢ in a given mode or
coherence volume of a field starting from an initial vacuum
state at # = O is nonzero; in fact, it is given by (N ) = az. On
the other hand, the average time between photon arrivals is
infinite.” Hence, on average we must wait an infinite length
of time for (N ) photons to arrive in the field. Stated differ-
ently, the average number of photons arriving in a finite
time 7 would, on average, take an infinite length of time to
arrive.

That Egs. (1).and (12), and (11) and (14a) are differ-
ent is a consequence of the random interference of the inde-
pendently emitted photons, subsequent to their emission.
The details of the evolution of the quantum statistics of
light through random interference are not the main focus
here, although we show physically in Sec. V how the boson
nature of the field leads to a long-tailed distribution. Other
aspects of this evolution are discussed at greater length
elsewhere.®

IV. AN IDEALIZED LONG-TAILED
DISTRIBUTION

In order to resolve the apparent paradox, we now show
that it is simply one manifestation of a long-tailed distribu-
tion: We will see that although it may be counterintuitive it
is not a paradox. Consider the distribution with pdf

f(1) =0.6185(¢ —1,) +0.3825(¢ —¢) (15)

in which 6( ) is the Dirac delta function. We will let ¢ — oo.
Let this distribution determine the random times between
the successive occurrences of some event and let N (1) be
the random number of events occurring in time z. We will
show that this idealized distribution manifests the same
apparent paradox as above. First, note that the average of
the distribution,

(T) =0.618 ¢, + 0.382, (16)

goes to infinity’ with c. Hence, the average time until the
first event is infinite. However, with probability 0.618 the
first event occurs at time f,. Given that occurrence, the
average time between the first and second events will be
infinite, etc. On the other hand, the mean number of events
occurring in a finite time ¢ will generally be nonzero, as
given by

0, if t<t,
0.618, 1,<t<2t,

t =
(N@) I, 26<t<3t,

(17)

Equation (17) can be determined by enumerating the var-
ious outcomes and their corresponding probabilities with a
probability tree. We see that the average number of events
is actually nonzero for #>1,. In fact, on average one event
will have occurred by time 2, even though the average
time until the first event is infinite. While at first this may
seem surprising, it is clearly not a paradox.

V. PHYSICAL ORIGIN OF THE LONG-TAILED
DISTRIBUTION

We now present a physical picture of how the long-tailed
distribution arises in the generation of thermal light. De-
fine the rate function r(¢) for a process so that r(¢)dt is the
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conditional probability that an event will occur in the inter-
val (2,2 4 dt] given that it has not yet occurred up to time ¢.
We can express this as

r()dt =Pr(t<T,<t+dt|T, > 1), (18)

or, using the general multiplication rule for conditional
probabilities,®

Pr(t<T,<t+d) _ f(ndr
Pr(T,>1) 1—-F()

We have taken n = 1 so that T, is the time of the first event,
J(2) is the pdf of T, and F (¢) is the corresponding CDF.
To make the meaning of #(¢) clearer, we can integrate Eq.
(19a) to obtain

f(t) =r(t)exp ( —f r(t')dt ) )
0

Applying Eq. (19a) to the exponential prdcess (11), we
easily find

r(t) = A. (20)

In other words, the probability that the first spontaneous
emission will occur in the next dt seconds, given that it has
not yet occurred by time ¢, is a constant independent of 7. In
fact, it is well known that in a statiopary Poisson process
events occur at a constant rate. Conversely, it is easy to
show that if there is a constant probability per unit time
that an undecayed atom will decay in the next instant then
the atom will have an exponential lifetime distribution.

Applying Eq. (19a) to the long-tailed distribution of Eq.
(14a), we find

(1) =a/(1 + at). 21)

Equation (21) shows that the rate at which the first photon
will arrive in a given coherence volume, given that it has
not yet arrived, falls off to zero with increasing time. This
decreasing arrival rate results in the corresponding distri-
bution having a long tail. Note, also, that as at — oo,
r(¢) -1/t and the natural time scale set by 1/a is lost. We
will return to this point in Sec. VL.

We now present a physical interpretation of Eq. (21).
Imagine that the atomic system spontaneously emits pho-
tons at a rate 4 into m coherence volumes (cells) of the
electromagnetic field. Because the photons are bosons, the
probability that a given photon enters a given coherence
volume (cell of phase space) is proportional to 1 plus the
number of photons n; already occupying the cell.>!®
Hence, the rate at which photons enter a given cell will be

m —1
r,.(t)=[(1+ni) (z (1+n1)) ]A)

r(t)dt = (19a)

(19b)

(22)

=1

where the n; are integer valued random variables whose
means are increasing functions of time given by

(n;) =At/m = at. (23)
Equation (22) is, of course, conditional on 7 ; photons hav-
ing already arrived. Equation (22) can also be expressed in

terms of the deviations An; from the mean. Dividing the
numerator and denominator of Eq. (22) by m, we have

m \ -1
r,.(t)=[(1+n,.) (1+at+zAnf) ]a. (24)

j=1 m
Now, the summation term is a random variable with mean

zero and variance going to zero at least as fast as 1 /m (if the
n; were independent, they in fact should be anticorrelat-
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ed). Hence, for large values of m we have
r()=[(14+n)/(1+at)]a, (25)

which reduces to Eq. (21) when no photons have arrived
yet in the given coherence volume. Note that if we average
r; (¢) over the (as yet unspecified) distribution of n; (¢) we
obtain, with the help of Eq. (23),

(i) =[1+{(n))/(1+at)]a=a. (26)

Hence, the average rate of photon arrivals into each cell is a
constant, a = A /m, as we would expect by conservation of
energy. '

We thus see that the clumping of photons caused by their
boson nature (or equivalently, by the random interference
of independently emitted wave packets) makes it less and
less likely as time goes on that the next photon emitted by
the atomic system will enter an empty coherence volume.
Instead, it will be “attracted” (classically, by constructive
interference) into those coherence volumes already con-
taining photons. In fact, the rate of arrival of photons into
the empty cell diminishes to zero as it falls progressively
farther behind its neighboring cells containing many pho-
tons. This is the physical origin of the long-tailed distribu-
tion for the time until the first photon arrives in a given
coherence volume.

More generally, we show in the Appendix that Eq. (25)
for arbitrary n; leads to the Bose-Einstein distribution.
However, that is not our main concern here; rather, it is
understanding the nonintuitive aspects of the time evolu-
tion of the quantum statistics of light.

VL. DISCUSSION

From Egs. (21) and (25) we see that when the dimen-
sionless product at is not large compared with 1 that 1/a
(having units of time) sets the natural time scale for the
rate function #(¢) and hence for the dynamics of our pro-
cess. However, when at— «,7(t) — 1/t because the con-
stant a cancels out.!' We now have the peculiar situation
that there is no natural measure for time in the problem
(other than ¢ itself). If we were to change our units of time
from seconds to years, a plot of #(¢) = 1/t would look ex-
actly the same as long as the ordinate and abscissa were
appropriately relabeled for the new units (i.e., events/se-
cond — events/year and seconds — years). This is an exam-
ple of what is known as self-similarity, where an object or
process exhibits similar features or behavior when viewed
at greatly different scales: It is a consequence of the lack of
anatural scale for the phenomenon. From Eq. (25) and the
results presented in the Appendix we see that the same
arguments also apply to the distribution of interarrival
times of the later photons as well.'?

Although long-tailed distributions exhibit counterintui-
tive properties, we see that they do not really constitute a
paradox. In fact, we have seen that their origin can be pic-
tured intuitively in terms of a physically understandable
process yielding a decreasing rate function and the loss of
any unique time scale for a process. Such distributions do,
in fact, arise increasingly often in many physical (and so-
cial science) situations, as can be seen in the contemporary
literature.*®

The long-time behavior of deterministic nonlinear dy-
namical systems'® in many areas, including optics,"* fluid
dynamics, chemical kinetics, weather,'® population stud-
ies, and physiology has been shown to exhibit not only
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qualitatively similar behavior in phase space, but also
quantitative universal aspects. Consider the region (the at-
tractor) of n-dimensional phase space visited by the system
phase point as it evolves in time after any initial transients
have died out. For certain ranges of the system parameters,
the dimensionality of the subspace containing these points
may be integer valued (for example, the two-dimensional
surface of a torus in three-space for multiperiodic motion)
or fractional valued (for deterministic chaos). In the latter
case, the motion is highly complex, being deterministic but
not predictable. The set of points containing the path of the
phase point, called a strange attractor because of its frac-
tional dimension, is one example of a fractal. 7 One of the
most important features of fractals is their self-similarity at
all scales. It has been observed that the long-tailed, hyper-
bolicl 8distributions are those most characteristic of frac-
tals.

It may be somewhat surprising that a type of distribution
so much in the forefront of current research interests in
nonlinear dynamics also appears in a rather different man-
ner as a result of random interference of light in quantum
optics. Such distributions had once been thought to be just
pathological curiosities. It now seems worthwhile to un-
derstand them better as they become more prevalent in
many branches of physics.
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APPENDIX: DERIVATION OF THE BOSE~-
EINSTEIN DISTRIBUTION FROM r{t)

Equation (25) expresses the rate function for the arrival
of the (n + 1) photon in a given coherence volume or cell
of phase space given that n photons have already arrived.
We have assumed that m> 1. We can also write the rate
function for the nth photon (n—n—1) as (N means
“and” )

Pr[t<T,<t+dt|(T,_ <) (T, >0)]  n
dt Cl+at
(A1)
To obtain the rate for the arrival of the nth photon p,, (#)
without the condition on T,,_, (i.e., the rate function for
the total time until the nth photon arrives) we must multi-
ply Eq. (A1) by
Pr(T,_,<t|T,>t) =Pr[N(t)>n—1|N(¢) <n],
(A2)
where we have used the equivalence of events as discussed
in Sec. IL ;
Now, expressing the conditional probability on the

right-hand side of Eq. (A2), again using the usual rule, we
obtain

Pr(T,_,<t|T,>?)
=Pr{[N()>n — 11N [N(#) <n]}/Pr[N(t) <n]
=Pr[N(t) =n— 11/Pr[N(2) <n]. (A3)
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Multiplying Eq. (A3) by Eq. (A1) we have
p. (1) =[n/(1+at)]a
X{Pr[N(t) =n—1]1/Pr[N(t) <nl}. (A4)

Equation (A4) is based on our physical picture of boson
accumulation.

Another expression for p, (¢) is obtained by using the
general definition of the rate function in terms of the pdf
and CDF of T,:

S (2)

t) =
P (1) _F.0

=[—%Pr[Tn>t]]Pr[Tn>t]_l’

Il

[—%Pr{N(tkn]]Pr[N(t)<t]“'- . (AS)

where we have again used the equivalence of certain events.
We can now equate the two expressions for p,, (¢), cancel
terms, and replace n—n — 1.

Defining the CDF for N(¢) as

F,(n)=Pr[N(t)<n], (A6)

we obtain the pleasingly symmetrical differential-differ-
ence equation for the CDF of the number of photons in the
coherence volume at time #:

(1 +mVE (n) = — (1+at>ﬁF,(n), (A7)
where V is the backward difference operator, i.e.,
Vg(n)=g(n) — g(n—1). Although Eq. (A7) can be
solved with standard methods, we already know the solu-
tion. It is straightforward to verify that the Bose-Einstein
distribution (12) with (N¥) = ar does in fact satisfy Eq.
(A7).

Two comments are in order at this point. Although our
derivation is rather similar to a standard urn model deriva-
tion of the Bose-Einstein distribution, ' ours highlights the
stochastic time evolution features of the process in contin-
uous time, whereas the urn model assumes particles are
added at discrete, deterministic times. Second, after a sim-
ple calculation using Eq. (12) and either Eq. (A4) or
(AS), we find that p, (t) > 1/t as at— « for arbitrary n.
Hence, the lack of a natural time scale and self-similarity
found for the time until the first photon arrival event also
applies more generally for this process.
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