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ABSTRACT

In this paper the characteristic functional is derived for the
number of customers in a nonhomogeneous M/G/e® Queue for various initial
conditions. Some possible applications are suggested. Comparison is
also made with the characteristic functionals for the arrival and

departure processes.



Some Results for the M/G/e® Queue

1. Introduction & Summary

In this paper we will consider the following diverse, but

mathematically similar phenomena:

A) The number of airplane Line Replaceable Units (LRUs)

in the base and/or depot repair pipelines

B) The number of customers in a totally self-service

facility

C) The number of particles within a given volume as a
function of time when these particles either undergo

Brownian motion or some other type of migration.

The results we obtain will be general enough to encompass
not only the transient regime before any steady state is reached,
but also the nonstationary case for which no steady state may
exist. The mathematical technique which we employ to arrive at
some of these results is the characteristic functional. Although
it is somewhat novel in Queueing Theory, the related generating
functional has been utilized effectively by Vere-Jones (1968) in

the study of arrival and departure processes,



We will derive the characteristic functional for the number
of customers in an M/G/o queue. The arrival process is assumed
to be a non-homogeneous Poisson process with arrival rate a(t),
a general positive function of time. We denote this M(t) /G/o .
The stochastic process N(t) is not assumed to be in any state of
equilibrium, were it to exist. We treat the transient case in
which, a) N(o) = m, or b) N(o) has a Poisson distribution with

mean Mg .

The ordinary characteristic function is a convenient tool
for dealing with a single, finite or a denumerable number of random
variables. A generalization of this is the characteristic functional
which can be defined for an arbitrary random variable X(t) (Bartlett,
1955) . We define it as the following expectation, possibly
conditional on some initial constraint, over all possible regliza-
tions (or "paths') of X(t) and weighted with the appropriate

probability '"density" of each path:
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The functions n(t) are arbitrary, suitably well behaved test

functions. Various correlation functions may be obtained by taking

multiple functional derivatives of Cl1o] -



For example:
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2. Derivation of the Characteristic Functional
We now derive the characteristic functional of N(t), the
number in the system at time t =z o. It is assumed that there

are m  customers in the system at t = 0.

Imagine that the total population of possible customers 1is
N +mp of whichmgy are in the queue at t = O. Define a function
%ﬁ (t) (RAC 1959) , i = 1,2-N + m, which is zero if customer
i is not in the system at time t and which is one if he is in
the system. Then the total number of customers in the system

at any time t is:
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We now assume the N customers will definitely arrive at
the queue sometime between O and T. N and T will later go to
infinity. If the arrival process were stationary we could set
.= N/T. However, A isa function of time; the probability
that any "nmew' customer will arrive at time t is proportional
to 2.(t). Normalizing to one the distribution between 0 — T for
each customer, i, we have the probability of the new customer,

i, arriving in dt; 1 € [1, N] ¢

Since the probability that customer i will arrive between

0 and T is certain this yields one when integrated from O to T.

Also the total number of arrivals between O and T is N.

Therefore, since the overall arrival rate is A(L):

) O i

Consequently, the probability that "hew' customer i is in

the system at an arbitrary point t between O and T is:
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Using the above results f\B(t) is the service CDF) , we obtain:
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Now considering the ''old' customers, present at t = 0, and
using a result from renewal theory for the distribution of
remaining service time (this is equivalent to assuming that the
old customers were in a steady state condition),
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By the independence of the different customers and servers

in the M/G/®2 queue;
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Again using this independence and Equation .
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We now consider the first part of Equation (5), the 'mew"

customers, by expanding the exponential:
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Now making use of the fact that if a customer is in the system

at t, and t, he is also in the system at all intermediate times,

]
and the fact that} = ’3’
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we have:

where €, and t., are the minimum and the maximum of the set
n
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After inserting a factor of n(n-1) to allow for the number of
different ways in which the maximum and minimum can be chosen from

B s
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W “
n» the sum over n term above becomes,
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Now use (3) for the term lst order in 7] and use (6):
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The infinite series in the exponent can be summed up and we

will do this later. The present form is, however, convenient

for taking functional derivatives.

We now consider the term corresponding to the customers

already in service at t = o.
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Now note that:
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To allow for the number of ways in which the maximum (t s )

can be chosen we insert a factor of n in the sum.

Hence (8) becomes:
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And the characteristic functional is obtained by raising (9)

to the mth power and multiplying by (7) and using (4) for
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With sufficient patience one can now calculate all multiple time

correlation functions of the form:
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We now consider the case in which the number of customers
in the system at t = o is not certain, but has a Poisson distribu-
tion with mean m . To obtain the characteristic functional for
this case we average the functional obtained above, which we

now denote Cm[?bﬂ , over a Poisson distribution:
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This summation is easily accomplished.

and performing a number of integrations by parts,

in equation (10) are also accomplished and we have:

o T s

l',h

J’[J;;Lbf;}le“Gxi,oﬂwﬂiJ;FF :}

3. Applications of the Characteristic Functional

We now make two observations:

D

2)

(Renewal Processes) The expression (9) raised to the
mth power is the characteristic functional for the
number of machines working as a function of time,
after the repairmen go on strike., Or, it is the
characteristic functional for the number of light
bulbs which are still working, out of m after we have

run out of replacement bulbs.

The characteristic functional, equation (11) is
of a form eminently suited to calculating the

cumulants K, (Theile semi-invariants, linked moments)

defined by:
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After changing variables

the summations



To obtain the ordinary characteristic function forE}l(t) for a
nonstationary arrival process with rate A (t) and a Poisson

distribution in the queue at t = o we set 2(t™) = 2. §(t=t).

Substituting this in equation (11) we obtain after some

calculation:
e enn (1) )
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Here the extended definition of X is:
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Equation (12) is seen to be the ordinary characteristic function

of a Poisson distribution with mean n(t).

For the stationary case where A = constant and‘ﬁo = o for
/%/Qi/q%this is seen to yield the standard result on p-273 in Gross

and Harris (1974). Also for the M(t) /M/os case the Pp(E) obtained

11



for A (t) a function of time can be shown to satisfy the

appropriate #1//1/%© Kolmogorov eq'n.

The case we have been considering is seen to correspond to
A equal to a constant (';&;%) for ¥ <o. Alternatively we could
have considered a more general A(t), for all t , and Equations

(12) and (13) would still be valid.

Multi-Time Correlation Functionsof N(t}

As indicated above the characteristic functional for A (%)
a general positive function (C%ﬁ%?not conditional on the distri-
bution at time o) can be obtained by extending the lower limit

from o to -©2 in the in‘ﬁegr&is_

The first order cumulant is the coefficient of I 8 8 b B

o
K ()= [1-8G-N]a(Qdx = AR
e . -
This agrees with what we obtained above for n(t).

The Second order cumulant (and correlation funection) 1is :
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The unit step function is denoted by & (x).

The correlation functions can thus be obtained either by

functional differentiation of {\$L;5or by using the standard

relations between the cumulants and the correlation functionJ.

4. Special Choices of (L) ( A Further Application of Cyl»el)

By choosing a particular test function of 'WZ(fj='?'g(t/-t)
above, we obtained the ordinary characteristic function of the
number in the /M (t) /G/°0 Queue at one time t. Similarly, by
choosing ~1(t")= 1, g‘(tl-t9+ ’?lgtt;-tz) we would obtain the
characteristic function for the joint process consisting of the
number in the Queue at tj and at t,. For the case in which 4
is a constant this is seen to be equivalent to the Smolvchowski
process of the fluctuating number of particles in a given region
(cf. Kac 1959). The latter has been applied to the fluctuating
number of particles in a region undergoing Brownian motion. The
Smoluchowski theory has also been applied by Furth to
estimating the speed of pedestrians on a sidewalk by successive
observation of the number within a given region and evaluating
the '"probability after effect" (Kac 59, Chandrasekhar 1943) .

Conversely, our result for non-constant A may be viewed as a

generalization of the Smolvchowski process for cases in which

j 2
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the concentration of particles in the fluid is changing in time.
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we obtain the characteristic function for the time averaged

number of customers in the Queue between t; and t..

A particular case which may be of interest is that in
which t1=o and N(o)=o. This would then represent the time
averaged number of airplane Line Replaceable Units (LRUs)
in the base and/or depot repair pipeline for a time period just
after the base has begun operating. The expected value of this
time average is easily obtained from our Equation (13) for n(t).
However, the variance about this mean may be helpful in

determining a safe level of initial spares required at the base.

An easily calculated example is a time homogeneous M [ e

Queue. The characteristic function for this time averaged N(t)

isg
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The expectation of the time averaged N(t) is:
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This could also have been obtained from n(t). The variance

is:
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5. Estimate of the Number in Queue After A =o

We now prove that the ¢« posterioridistribution of the number
of customers in the system at a time t after A falls to zero
is independent of the number of customers observed to have
departed during the time period from o to t. A 1s assumed
to be constant up to zero time and zero afterwards. We have
from (12) and (13):

Al €

.

P,t) =

T

where for the case we are considering the upper limit on the
integrals can be set to zero for times greater than zero. At

t=o0 we have;
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by the usual definition of M

We now calculate thea posteriori distribution of the number
in the Queue given that we have observed 71 customers to have
left between o and t. The "a priori' distribution is the above
p(n,o0) which is to be estimated and updated by consideration

of the departures.

The conditional probability we seeKis:
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The joint probability p(m,t;m,); if each customer in the
Queue at time has probability p of leaving before t, is:
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From renewal theory we have:
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Now the probability of m departures, ?km,t) is:

s
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And hence:
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Since this is independent of the number observed to have

left we have proven our assertion. Therefore, no further infor-

mation is obtained concerning the remaining number of customers

by observing the departures.

Also, by the definition of p given above, it is easily

shown that this a posteriori distribution is equal to the

a priori distribution given above, i.e, p(n,t).
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and since %b=§%§m

This is also required by consistency. ©So we have:

This result complements Mirasol's (1963) paper concerning
the output of an_fﬁfngEQueue. Our methods may be used to

derive the generalization of Mirasol's results for non-homogeneous

arrival and service rates.

6. Characteristic Functionals for the Arrival and Departure

Processes

By methods similar to the ones used above one can derive the

characteristic functionals for the number of customers, X(t) who

have arrived before t and for the number of departures, Y (t),

i 8



from the Queue. We present the result here along with Gy [ "¢]]

for comparison. We give the case for which A =o for t < o.
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In Cy[kﬁﬁ the effective departure rate is:

rt | )
by = dBH) 2 (#-x)dx
L) = j e 2 (¢ ~x)

fo*ﬂﬂjland Cyf*ﬁﬁj are seen to be of the same form. Hence
the departure process is nonhomogeneous Poisson (ef. Mirasol

1963 and Newell 1966) .

Many possible applications of the characteristic functional
method remain to be explored further. However, it is suggested
that interesting and useful results may reward further efforts
along these lines, not only for the nonstationaryf{k#%?but

perhaps for other Queues as well.

/9



REFERENCES

Bartlett, M. S., An Introduction to Stochastic Processes,
Cambridge University, Press (1955).

Chandrasekhar, S., Reviews of Modern Physics 15, 1-89 (1943)
(Reprinted in WAX).

Gross, D. and Harris, C. M., Fundamentals of Queueing Theory
John Wiley & Sons, Inc., N.Y., 1974.

Kac, Mark, Probability and Related Topics in Physical Sciences,
Interscience Pub. Ltd, London (1959).

Mirasol, N. M., Operations Res. 11, 282-284 (1963).
Newell, G. F., J. Siam Appl. Math 14, 86-88 (1966).

Vere-Jones, D., J. Roy. Stat. Soc. B30, 321-333 (1968).

Wax, N.,Selected Papers On Noise And Stochastic Processes,

Dover, N.Y. (1954)



