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ABSTRACT

The exponential autoregressive (EAR) time series process of Gaver and
Lewis, EAR(1), is generalized to continuous time. It is shown that
observation of the continuous time process at equally spaced time intervals
recovers the EAR(1). We observe that the continuous time process is
somewhat analogous to the Ornstein-Uhlenbeck process. While the latter is
the stationary, time-reversible, Markov process with Gaussian marginal
distribution produced by filtered Gaussian white noise, the continuous
EAR(1) process is the stationary, irreversible, Markov process with
exponential marginal distribution produced by filtered shot noise impulses
having exponentially distributed amplitudes. The "defective™ distribution of
the EAR(1) innovations (non-zero probability of zero values) arises naturally
from the integrated Campbell process. When the filter decay parameter does
not exactly match the rate of shot impulses a gamma process results. The
joint (multi-time) characteristic function of the discrete EAR(1) and the
characteristic functional of the continuous process are derived and some
applications are discussed. The characteristic functional for the
corresponding second order continuous process (driven by the same input
noise) is derived. Although it is also irreversible and possibly non-negative

(for over-damping) it is not a gamma process.



. _INTRODUCTION

In seeking general models of stationary time series for applications in

which the common assumption of Gaussianity (hence, time reversibility!)
is not appropriate2:3:%, Gaver and Lewis® modified the usual first order

autoregressive model, AR(1),
n TxXAn-1 * (z.:n A (1)

They determined the properties of the innovation, £n , such that the x's
would have a marginal exponential distribution. Solving the
corresponding equation for the characteristic functions of x and &, they
found that £ must have an exponential distribution with probability 1-«
and be zero with probability . They termed this a "defective”
distribution (by defective they mean not the usual definition® but that
could be determined from two successive observations, if the innovation
is zero). If the innovation takes the value zero with probability «’ = «

then the marginal distribution of the x's is Gamma.

The joint multi-time characteristic function of the discrete EAR(1)
process is derived in Appendix A and applied to determining the sampling
distribution of the periodogram. In Section II the EAR(1) process is
generalized to continuous time. The input noise is found to be shot noise
impulses with exponentially distributed amplitude. The "defective”
distribution of the EAR(1) innovations (non-zero probability of zero

i



values) is found to arise naturally from the integrated Campbell process.
It is shown that observation of the continuous time process at equally

spaced time intervals recovers the EAR(1).

The characteristic functional of the continuous process is derived and
certain applications are investigated in Section lIl. In Appendix B the
characteristic functional is found for the second order system driven by

the same noise, showing that it is not a Gamma process.

We observe that the continuous time process is somewhat analogous to
the Ornstein-Uhlenbeck process. While the latter is the stationary (time
reversible) Markov process with Gaussian marginal distribution produced
by filtered Gaussian white noise, the continuous EAR(1) process is the
stationary (irreversible) Markov process with exponential marginal
distribution produced by filtered shot noise impulses having '
exponentially distributed amplitudes. When the filter decay parameter
does not exactly match the (possibly non-homogeneoué) rate of shot
impulses a gamma process results®. In fact, this is the first example of
irreversibility in reference [1]. It provides a two-parameter family of
non-negative, non-Gaussian, irreversible, Markov processes with which

to model naturally occurring time series.

1I. The Continuous Time Process
Let the continuous time parameter, t, be related to the discrete time
index, n, by t = n-h, where h is the time interval between observations of

the time series. Note that it is reasonable for the inter-observation



decay constant, «, to depend on the time between observations, h.
Subtract «xn-1 from both sides of Eq. (1), and add and subtract Xp-1

from the 1hs, then divide by h to get,
(Xn"Xn—])/n + ("(X)/h')(n—] = an/h ' (2)
Take the limit as h --> 0 and define, (clearly & -—> 1),

¥(t) = lim (1 -« )/,
h->0

where we have generalized to a non-homogeneous process. Although the
scale of the continuous time innovation becomes infinite, the probability
that it is non-zero goes to zero as h, i.e., (1 - &) ——> ¥(t) h. Hence, the
innovation becomes a non-honiogeneous, exponentially distributed (in
magnitude), series of shot impulses (Campbell process). The continuous
limit of Eq. (2) can be written as the stochastic differential equation,

d7dt x + F(t)x = gt), (3)

where g(t) is a shot noise process consisting of random delta function
impulses multiplied by a r.v. (zj) with exponential distribution,

at) = X zjst -ty (4)
We define this more explicitly in Section IIl. In fact, it is really more

proper to write Eq. (3) in the form,



dx(t) + ¥(t) x(t) = dv(t) ‘ (3)

where Y(t) is a point process whose independent increments correspond
to those of a non-homogeneous counting process (of rate ¥(t) ) times an
exponentially distributed r.v. with parameter A. Solving Eq. (3) is

straightforward, yielding,

t+h t+h  t+h
x(t+h) = expl-f¥ dt’ 1-x(t) + [expl [F(t")dt”1g(t)dt’. (6)
L t t

t+h
If we define o = expl-[¥ dt’ 1, then the first term on the rhs is just
t

x%n. the second term is the innovation, while the Ins is Xp+1

(cf. Eq.(1) ). The probability of no arrivals in a non-homogeneous
Poisson process is also given by «, as defined here, hence, we-see that
the second term is zero with probability «. To complete the recovery of
the discrete EAR(1) process we need only show that when the innovation
in Eq. (6) is non-zero it has an exponential distribution with parameter
A. If his small enough so that the probability of more than one arrival
between t, t+h, is negligible, this follows eaéilg. For larger values of h
the innovation (filtered shot impulses) will still have the required
distribution. We defer the proof to the next Section where it follows

easily using the characteristic functional derived there.

Given the above, we can write down almost immediately certain

fundamental results for this process. For simplicity we now assume



constant ¥, the more general situation is easily recovered. The

conditional pdf for x(t), given x(0) = g, is,
f(x, t]x%g) = e7Bta(x -xge™¥t) + (1 - e"¥tne Mx-xgexpl-8tD).  (7)

In other words, with probability « = e~%t the noise source remained zero
and x decayed exponentially from its initial value, and with probability
(1-x) an innovation with exponential distribution was added to this
decaying value. Multiplying Eq. (7) by Ae~MXg yields the steady state

joint pdf, f(x,t; Xg). A straightforward calculation using this yields,

Covix(t), ®(0)] = 1/A2 e~ 3t (8)

and, for the correlation function,
pr) = e[zl C)

as expected for an exponentially distributed Markov process. This

process is also discussed in reference [8].

1. The Characteristic Functional
We now derive the characteristic functional? for the continuous process.
First, the shot-noise source, g(t), is defined more explicitly over [-T, T]
as,
m
glt) = lim 3z 8t - ty), (10)
T->00 =1

where m has a non-homogeneous Poisson distribution, pm, with mean,
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T
n o= [ ¥(that, (11)
=T

the tj have pdf given by ¥(t)/ n (as is appropriate for a non-
homogeneous Poisson process), and zj have an exponential distribution,

parameter A. The characteristic functional for g(t) is,

=
Cgn()l = Tim  E{ expl ifn(t) g(t) dt]}, (12)
T=>c0 -T

or, w m
= lim T pm (T ffdty 3EN/M dzj rezjei 2 (L) 1),
T->0 m=0 j=I

where the integration over tj is -T -> T the integration over zj is 0->x.
We have made use of the Dirac delta function to perform the integration
over t. The product over j now reduces simply to the expression in the
square brackets raised to the mth power because of the independence of
each term in the shot noise. Performing the average over m (yielding the
standard result for the generating function of a Poisson distribution) and

the integration over zj (yielding the characteristic function for the

exponential distribution) and taking the limit T --> o, results in,

Caln()l = exp{i [ dt W) nt) /A -in() ]} (13)

il v ¢ ]
Now, to find the characteristic functional for the process, x(t), subject

to the initial condition, x(0) = xq, use the solution of the stochastic



differential equation, (letting ¥ be constant to make it easier to follow

the derivation) in the definition,

Celn()] = E{ expl ifn(t) x(t) dt]}, (14)
0

or,
= explixg[dt n(t)e VL] - exp{ifdt n(t)e dLfdt’edl o(t-t’) g(t") },

where we have used the properties of the Heaviside unit step function,
6(t-t'), so that all the integrations are over 0 -> o, thus making it

easier to interchange the order of integration to give,

Cxn() = (15)
expligfdt m(t)e~Ft] - explifdt’ g(t’) [[dte~T(t-t") g(t-t") ‘n(t)] 1.

The second exponential term is now of exactly the same form as the

characteristic functional for g(t), with the expressioh in square brackets

replacing m(t"). Hence, making use of Eq. (13) we have,

CIn()] = explixg [dt n(t)e-3t] * (16)
0
exp {ifat’ ¥ [fdt e~¥(t-t) q()1 7 [A - i [fate~¥t-tIn)I 1,
0 t. t!

where we have used the properties of the step function.



To determine the marginal distribution of this process use
() = Mg 8(t-tg), which recovers the ordinary characteristic f unction

for x(tg). A straightforward calculation yields,
Cu(to)lMal = explingxoetol - {11 - i e Stol /A -imgl ). - (17)

This is the characteristic function of a r.v. that, with probability

o = =8t has the value xge~8t , and with probability (1-e) is the sum of
xoe‘m and a r.v. with exponential distribution of parameter . This is
the proof of Eq. (7). Setting xg = 0 and taking t = h in Eq. (17), we have
the characteristic function of the integrated shot noise, the second term
in Eq. (B) corresponding to the innovation of the discrete EAR(1). As
advertised, it is seen to have the value zero with probability e« and to
have an exponential distribution with probability (1-o). This completes
the proof that our process leads back to EAR(1) when observed at equally

spaced time intervals.

Now, taking tg -—> % Eq. (17) yields the marginal distribution of the

steady state process,
Cx(oo)['ﬂo] = AN [A- lﬂg] . (‘8)

i . the characteristic function of an exponential distribution, as
promised. The foregoing equations can all be generalized for when the

decay parameter, ¥, is not equal to the shot-noise rate, ¥’. Inthat case



the first appearance of ¥ in the second line of Eq. (16) is replaced by ¥,

yielding for the marginal distribution, conditional on %(0) = g,
Cx(toMal = explingxoe™tal - { Ix - ing e¥tal / [x - imgl }¥7/%. (19)

One readily sees that as tg --> o this becomes the characteristic
function for a Gamma distribution, unless ¥' = ¥. In either case, it is
apparent from the nature of the process that it is not time reversible, as
is the output of an identical linear system, driven by Gaussian white
noise (the O. U. process). In fact, it is just this shot noise driven
process which is used as the first example of an irreversible, non-

Gaussian process in reference [11.
Setting tg = h in EQ. (19), it is clear that the second term,
{IN-imge ¥ / [\ - ingl Y378,

is the characteristic function for the EAR(1) innovation (the second term
in Eq. 6 ) which, applied to Eq. (1), generates a Gamma marginal time
series. Although the form of this characteristic function is difficult to
interpret, it can be simulated in the following manner, based on the

underlying continuous process. 1) Choose n from a Poisson distribution,
mean ¥°h (n may be zero); 2) generate the nr.v.’s {tj} uniform on

[0, hl; 3) generate n exponential ( parameter A) r.v.’s, Ej ; 4) let the

innovation be



n
F= T e 0ty E;. (20)
i=1

This agrees with a prescription given by Lawrance? for generating the

innovation, also based on the underlying shot noise process.

V. Conclusion

We have shown the relationship between the irreversible and non-
Gaussian continuous version of the EAR(1) model and the (reversible and
Gaussian) Ornstein-Unlenbeck process. There are a number of situations
in which the continuous version of EAR(1) may be a reasonable model.
The properties of non-negativity, irreversibility and a gamma marginal
distribution may be appropriate for time series such as arise in
geophysics. We have elsewhere proposed this process as a model for the
hazard rate of components in a random environment.0 In reference [10]
the characteristic functional for the process is, in fact, appliéd directly

to obtain the component and system reliability.

The Wiener and Ornstein-Unlenbeck processes are often used as models
of physical and economic phenomena because of their Gaussian
properties, time-reversibility, and spectral densities. It will prove
useful to enlarge the arsenal of continuous processes readily available
for modeling phenomena which are non-Gaussian and irreversible but

still possessing desirable spectral properties.

Acknowledgement This work was supported through a contract from The
U. S. Navy, SPAWARS (Code PDW107-5).

1



References
1. G. Weiss, "Time-Reversibility of Linear Stochastic Processes®, J.
Appl. Prob. 12, pp. 831 - 836 (1975)

2. P. A. W. Lewis, "Some Simple Models for Continuous Variate Time
Series”, Water Resources Bulletin 21, No. 4, pp. 635 - 644 (1985)

3. E.McKenzie, *Some Simple Models for Discrete Variate Time Series”,
Water Resources Bulletin 21, No. 4, pp. 645 - 650 (1385)

4. A. J. Lawrance and N. T. Kottegoda, *Stochastic Modelling of
Riverflow Time Series”, J. R. Statist. Soc. A, 140, Part |,
pp. 1 - 47 (1977), (including discussion)

5. D.P. Gaver and P. A. W. Lewis, “First Order Autoregressive Gamma
Sequences and Point Processes”, Adv. in Appl. Prob. 12, No. 3,
pp. 727-745 (1980) |

6. W. Feller, An Introduction to Probability Theory and its Applications,
Volume 1, (Wiley, New York) 1960, p. 283

7. M. S. Bartlett, An Introduction to Stochastic Processes, Znd edition,
(Cambridge University Press) 1966, p. 324f

8. S. Ross, Stochastic Processes, (Wiley, New York) 1983, p. 212ff

12



q. A._J. Lawrance, "The Innovation Distribution of a Gamma Distributed
Autoregressive Process”, Scand. J. Statist., 9, pp. 234 - 236, 1982

10. E. Rockower, "Reliability in @ Random Environment”, NPS T.R. 1886

Appendix A. The Multi-time Characteristic Function for the EAR(1)

To investigate certain properties of EAR(1) it is convenient to first
derive the complete multi-time characteristic function for the process.

This function is defined as,

0
Cu({n}) = Elexpli> mpxn 1}. | (A1)
n=-o0
As is well known, we can write xp, as,
e :
= 2 oKink. (A2)
k=0
Now, make the change of variable, j = n -k, and define the function
Bjn =1 it | » n, else 0. The latter is analogous to the Heaviside step

function, and allows us to take both summations over [-e0, o], making it
easier to interchange the orders of summation. The summation in

Eq. (A1) can now be written,

2 Mnxn = 2 & L2 MnedMéjn . (A3)

n=-00 j=—o0 n=-o00
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Denote the expression within the curly brackets by w j and insert in

Eq. (A1). Hence, the characteristic function for the process, {x}, has
been expressed in terms of the characteristic function for the

innovation, {£},
o0

Cx({n})=E{exp[i2ijj]}. (A4)

j=-o0
Because the £ jare iid the expression on the right of this equation is
simply the product of the characteristic functions for each £ j»

Ce(tn}) = ML - iwjed/Ch - iwj) }, (AS)

j

each term being the characteristic function for a r.v. having exponential
distribution with probability (1-«), and the value zero with probability
«. Replacing w with its value from Eq. (A3), we have, finally,

J . J .
Cl{nd) = T -i(Zaned™Mal/ -1 (X ™)1 (48)

J n=-oo n'=-co

For example, if we are concerned with a finite observation period for
this time series, where j = 0 -> N, we would simply set all 1j to zero

except when j € [0, NI.

All multi-time correlation functions can be recovered from this
characteristic function in the usual manner by taking the appropriate
derivatives wrt 1z, Mp, etc., and then setting all n’s to zero. In
addition, by suitable choices for the {mn} we can obtain the characteristic
function for certain averages of the {x} process. For example, setting n

equal to mg for j € [0, 4] and zero elsewhere gives us the characteristic
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function for the average over 4 observations of the series.

Alternatively, setting mj = mj + M2j , Where myj is m (a constant) for
j €10,4] and zero elsewhere, and setting m2j equal to My for j € [t, t+4]
and zero elsewhere, yields the two time joint characteristic function for
the moving averaged time series. As a final example, choose

N = Okl 1-B)BKN (where 0 < § < 1) yielding the characteristic

function of the exponentially smoothed time series.

Bartlett? suggests a method for estimating the sampling statistics of
the periodogram of a point process in continuous time using the
characteristic functional for the process. We apply his method in the

current context, letting,
nj = V2/N {6 expliwj] + &* expl -iwjl}, (A7)

for 0 ¢ j ¢ N, and zero elsewhere, where 8™ is the complex conjugate
(c.c.) of 6. It is clear that we obtain the ordinary joint characteristic

function of
Jw) = J@2/N) T elw] Xj,

and J(-w), of the form,
N
Cygxe,0™) = Ma-ied-B/{x-ilI (A8)
j=0

where the summations can be carried out in closed form, yielding,
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[1 = [6(x-ei®]) /(x-ei®w) + cc. 1. (A9)

In any case, the various moments of the periodogram may be found from

derivatives of the form,

(d/de)P (d/de™)d Cy yx(e, 8™) |o=0 -

Appendix B. The Second Order Linear System
It would be interesting to know whether a Gamma process also results if

the same shot noise process, g(t), is filtered through a second order
linear system. In this Appendix we answer that question in the negative

by calculating the corresponding characteristic functional.

The stochastic differential equation of interest is that of a damped
harmonic oscillator (or RLC circuit), driven by exponentially distributed
shot impulses,

d2/dt2 x + 2¥ d/dt x + wg2 x = g(t), B1)

where ¥ and wg are the system damping constant and undamped, natural
frequency, respectively. We have set the "mass” parameter equal to one.
We will take advantage of the mechanical analogue to determine the
response to the stochastic driving “force”, g(t). As is well known there
are three possible situations of physical interest, viz. over-damping,

critical damping, and under-damping. With over-damping (¥ > wg) the
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effective circular frequency of the system is pure imaginary, hence there
is no oscillatory component of system response and the response to a
positive impulsive force damps out like e~tsinh(wt). In this case the
time series, X, is again non-negative, assuming g(t) is non-negative.
With under-damping (¥ < wq) there is a damped, oscillatory response to
a positive impulsive force. The response is like e‘?ffsin(mt). The
process is then no longer non-negative. Finally, critical damping is the
transition point between the other two cases, in which the response is
like (A + Bt)e~%t, there is no oscillation, and the system passes through

the zero point at most once. We will not consider this case here.

As is well known, the effective system frequency, w, is determined by
seeking the general solution to the homogeneous version of Eq. (B1) in

the form, A eidit + B eidat. A standard calculation yields,

81‘2 = [+ '\/32'(1)02 1. 1 (BZ)

Define w = |V/(¥2 - wg?)| for both under- and over-damped cases. Now,
conservation of momentum for an impulsive force (of magnitude z;3(t) )

requires that the change of momentum (Ap = mx) equals the total

impulse, [Fdt. Integrating over the delta function yields,

Ap = zZj,
or, sincem = 1,
%(0*) = Zj.



Also, requiring that x(0) = 0 allows us to solve for A and B to match

these initial conditions on x(t), yielding,
Zj ‘
X(t) = = e~ 8t sin(wt),
for the under-damped case, and,

-
%(t) = Z)l e~ 9t sinn(wt),

for the over-damped case. Hence, using the linearity and translational
invariance of Eq. (B1) we can write the general under-damped solution,

assuming initial velocity, vy, and position, g, as,

n -
x(t) = xgcoswt + il sinwt + X L e~ 3(t-t)) sin(wt) ot - t;). (B3)
w e ® J

The cos and sin are replaced with cosh and sinh, respectively, for the

over-damped case.
To calculate the characteristic functional for this process, we insert it

into Eq. (12) in Section 111 and repeat (with slight modification) the

steps following it, yielding (replace sin with sinh for overdamping),
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o0

Cyln()] = | exp{i fn(t) [xgcoswt + vp/w sinwtle~Btdt} *
0 \
% % (B4)
explifdt’ ¥ [[n(t) sinw(t-t")e~¥(t-t')dtl/
0 t o
[wh - ifn()sinw(t-t)e"3t-t)gt]}
t

Now, use 1(t) = Mgd(t - tg) and let ty -> o to obtain the ordinary
characteristic function of the steady state marginal distribution of x(tg),

(0]
Cx(tg)(Mo) = exp{ifdt ¥’ mg e~ Ftsin(wt )wh - inge~Stsin(wt)l}. (BS)
0

[t®is seen that even when ¥’ is a constant, and replacing the sin with
sinh, this does not integrate to yield a characteristic function of a
Gamma process. This can also be understood from another poiht of view.
A straightforward analysis (we omit the details) shows that an
overdamped second order system is equivalent to two first order
systems in series. The output of the first of the first-order systems is,
by our previous analysis, a Gamma process. However, feeding this into
the second first-order system would not be expected to result in a
Gamma process because only an eXponentiaHg distributed shot noise
input can do that.
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