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Quantum derivation of K-distributed noise for finite (N)
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Semiclassical derivations of the fluctuations of light beams have relied on limiting procedures in which the average
number, (N), of scattering elements, photons, or superposed wave packets approaches infinity. We show that the
fluctuations of thermal light having a Bose-Einstein photon distribution and of light with an amplitude distribution
based on the modified Bessel functions, Kai, which has been found useful in describing light scattered from or
through turbulent media, may be derived with a quantum-mechanical analysis as the superposition of a random
number, N, of single-photon eigenstates with finite (N). The analysis also provides the P representation for K-
distributed noise. Generalizations of K noise are proposed. The factor-of-2 increase in the photon-number second
factorial moment related to photon clumping in the Hanbury Brown-Twiss effect for thermal (Gaussian) fields is
shown to arise generally in these random superposition models, even for non-Gaussian fields.

INTRODUCTION

The fluctuations of light beams from spontaneous emission'
and from laser scattering through the turbulent atmo-
sphere 2' 3 have been calculated in semiclassical analyses in
which it is assumed that the average number of scattering
elements, photons, or superposed wave packets approaches
infinity. The individual contributions may arise from the
independent decay of atoms or from the refraction and dif-
fraction from structures at various scales in atmospheric
turbulence. In each case the random superposition of light
leads to constructive and destructive interference and hence
to amplitude fluctuations and scintillations in the receiving
aperture. The model for thermal fluctuations of light seems
fairly straightforward, leading as it does to a Gaussian am-
plitude distribution as the average number, (N), of contri-
butions tends to infinity. The latter is an instance of the
central-limit theorem,4 which gives conditions such that the
sum of a large number of independent random variables
tends to a Gaussian distribution.

However, Jakeman and Pusey3 pointed out that there is
an alternative to the usual central-limit-theorem result,
showing that when the number of contributions, N, is itself a
random variable having a negative binomial distribution,
one obtains non-Gaussian noise in the limit. The distribu-
tion of amplitudes, A, was found to have what they termed a
K distribution, which is related to the modified Bessel func-
tions. Various generalizations 5 of this model have also prov-
en useful by extending the range over which the data on
propagation of light through turbulence can be fitted to the
models.

It is always of interest to determine the minimum assump-
tions required to arrive at models, especially for those mod-
els proving useful in describing empirical data. We show
that taking the limit (N) - is not necessary in a corre-
sponding quantum theory. In fact, the quantum formula-
tion of this model suggests a number of paths for generaliza-
tion. One such path leads to the inclusion of a deterministic
coherent component to the field, similar to the I-K distribu-
tion of Phillips and Andrews.5

With our general formulation of the random superposition
of photon eigenstates, we find that if the number of elemen-
tary sources is Poisson, as is appropriate for spontaneous
emission or laser scattering from a rotating ground glass, the
final field has a Gaussian amplitude and a Bose-Einstein
photon-number distribution. When the number of sources
has a negative binomial distribution, the final field is found
to have the so-called K distribution. In fact, we obtain the P
representation for K-distributed noise, which then leads to
exactly the same probability-density function (PDF) for the
amplitude as formulated by Jakeman and Pusey.

More generally still, we show that, whatever the distribu-
tion of elementary sources, scatterers, etc., the second facto-
rial moment of the photon number in the field (hence ())
has exactly twice the value of that for corresponding classical
particles. We thus see that this famous twofold increase
(related to photon bunching) measured in the Hanbury
Brown-Twiss effect6 arises quite generally in the random
superposition of independent contributions to the light
field, even when the resulting field is non-Gaussian.

QUANTUM THEORY OF K NOISE

A type of noise with amplitude distributions based on the
modified Bessel functions, K,-1, has been found useful in
describing light (and radar signals) scattered from or
through turbulent media. The distribution of the classical
amplitude, A, is derived from the random superposition of N
individual components with an average amplitude squared
W). Moreover, N is a random variable having a negative
binomial distribution appropriate to random scattering ele-
ments whose number evolves according to a type of birth-
death-immigration process. The resulting amplitude dis-
tribution is

p(A) = 2b (bA Ko,(bA), (1)

where A is the field amplitude, b = 2/(A 2))1/2 , and : is a
parameter from the original negative binomial distribution.
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Equation (1) was obtained in a completely classical deri-
vation as the Bessel transform of the limiting form of the
classical characteristic function,

lim (exp[i(u 16 1 + U262 )]) = I + ) I
(N) - -~ ~ \ 4/3 (2)

where 61 and 2 and u and u2 are the real and imaginary
parts of the electric field and u, respectively; u = ul; and A =
101.

We now derive this process in a quantum-mechanical
model of scattering by random independent scattering ele-
ments. The normally ordered quantum characteristic func-
tion is defined by

C(, t*) = tr[p exp(ta+)exp(-t*a)] = (exp(ta+)exp(-t*a)).

(3)

To begin, we calculate the characteristic function for the
one-photon state. We insert p = 1) (1| in the definition of
the characteristic function and obtain

C1Q(, t*) = (1Iexp(a+)exp(-t*a)I1) (4)

or

C1Q(, t*) = (0la exp(ta+)exp(-t*a)a+I0), (5)

in terms of the creation and annihilation operators a+ and a.
We use the shift property of the exponentiated operators7 to
write this as

We now average over the random variable N with a negative
binomial distribution.

(11)
N + - 1) ((N)/1 3)N

P N (+ (N)/)+1
which is a two-parameter distribution characterized by its
mean (N) and its normalized variance 1/ + 11(N). This
distribution can be interpreted heuristically as the general-
ization to noninteger ,B of the sum of 3 geometric (i.e., Bose-
Einstein) random variables, each of which has a mean (N)/,3
and a variance equal to ((N) /) ( (N) / + 1) as is appropriate
for a geometric random variable. Hence the sum of , such
random variables will have a mean (N) and a variance equal
to O [((N)10)((N)/10 + 1)]. Normalizing the latter by divid-
ing by ((N))2 gives the required variance. The average of
Eq. (10) over N is then accomplished easily by recognizing it
as just the probability-generating function6

(12)G(,y) = E PN(1 - )N
N=O

for a negative binomial distribution, evaluated at pI412. By
the heuristic interpretation of the distribution as the sum of
3 independent geometric random variables, it is apparent
that the generating function for the number of scattering
elements is that of a geometric random variable raised to the
3 power, i.e.,

C1Q(, *) = (01(a + )(a+ - *)1o) (6)

C1(t, *) = 1 - 112. (7)

G(,y) = (I + (') y

Hence the characteristic function for the noise is

C(Q, V*) = (1 + ) p12) .

We first assume that there is a random number of weak
scatterers in the beam propagation path, each having proba-
bility p of contributing a photon to the random superposi-
tion of scattered fields at the detector (but negligible proba-
bility of contributing two or more photons). Hence the
density matrix, p, for the field contribution at the detector
from an elementary scattering element somewhere on the
propagation path is that for a single-photon state with prob-
ability p and zero photons with probability (1 - p), i.e.,

Po = (1 - p)I0) (01 + pll) (11,

and the corresponding characteristic function is

Co(0 , *) = (1 - p)l + p(l - 112)

(8a)

(8b)

or

CA(t, t*) - 1 - p1 2. (9)

The total field is obtained as the random superposition of
the contributions from each scattering element, and hence
the characteristic function for the total quantum field, is the
product of the characteristic functions for each independent
scattering element. Subject to there being N elementary
scattering elements, the total characteristic function for the
field at the detector is

C(Q, *) IN = (1 - (02)N

This is of the same form as that obtained for the classical
characteristic function [Eq. (2)] for the electric field in a
semiclassical derivation by Jakeman and Pusey in the limit
as (N) - -. However, no such limiting operation is needed
in our quantum derivation.

Now the normally ordered quantum characteristic func-
tion for fields with a valid Glauber-Sudarshan P representa-
tion with respect to coherent states can be written as

C(Q, *) = J exp(ta* - *a)P(a)d2 a. (15)

Expressing t as u + iv and a as x + iy, we obtain

C(u, v) =J f exp(2ivx - 2iuy)P(x, y)dxdy. (16)

This is just the Fourier transform of P(x, y), and hence the
inverse Fourier transform is

P(x,y) = 4 JJ exp(2iuy - 2ivx)C(u, v)dudv. (17)

It is now convenient to use polar coordinates defined by x = r
cos 0, y = r sin 0, u = p cos (o, and v = p sin so and use the fact
that C is a function of p = I41 only. We then have

4 2 ,,
P(r, 6) = J l exp[2irp sin(o - )]C(p)pdpdst. (18)

(27r)2 Jo, Jo

and, finally,

(13)

(14)
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The integration over so can be done by recognizing the inte-
gral representation of the Bessel function of zeroth order, Jo,
giving

P(r) = 24 J J0 (2pr)C(p)pdp. (19)

Note that this is not a function of 0, and hence P is circularly
symmetric. Substituting our expression for C(p), we have

4 lo ( (N) 20-
P(r) = - f J(2pr) 1 + PP}pdp. (20)

This integral is tabulated,8 yielding the P representation for
our model,

4 ( 3 )(1+0)/2 (1aF)/-/K3_1 [( )1/2 21-1]

Raising this to the Nth power and averaging N over a nega-
tive binomial distribution as before, we obtain the character-
istic function in the moderate scattering regime,

C(, *) = + (N) PI + 2p2) P2 ] (27)

More generally, if the probability distribution Pm of m pho-
tons scattering independently from each element into the
receiver aperture has a probability-generating function
G,,y), we obtain, for the contribution from each scattering
element,

CA, V*) = Z Pm(1 - 11 2)m

m0'

(28)

or
P(a) =

_(/.)

(21)

where K_ 1 is a modified Bessel function of order - 1 and
where lal = r.

To obtain the PDF of the field amplitude, f(A), we again
use polar coordinates and the relation defining the ampli-
tude PDF,

C0Q(, t*) = Gm(t12). (29)

Now if there are N independent scattering elements, the
total characteristic function is Gm(I2)N. Averaging N over
an arbitrary distribution,

C(Q, *) = E PN1 -[1- Gm(ItI2)]IN,
N=O

(30)

f(Ic,1)d6aI = J P(c)oldlaIdO.

Because P(a) is circularly symmetric, the integration over
angle is trivial, yielding

f(laI)dIal = 2rP(a)1aod6aI. (23)

Now after making the replacement a - A for the field
amplitude, we have

[ (A) = PN4 )(1+) (A)#K#_1 [( ) )1/2 2A]
f(A) ~~~jpN'(/3 .(24)

With the identification of the average photon number,
p(N), with (A2 ) we obtain exactly the same result for the
PDF of the amplitude as expressed in Eq. (1).

GENERALIZATIONS OF THE MODEL

In the foregoing analysis we assumed the probability of more
than one photon from each scattering element to be negligi-
ble. We now consider a model giving rise to stronger scat-
tering. Let the probability of one photon from each scatter-
ing element be given by PI, and let that of two photons from
each scattering element be P2. We assume that the scatter-
ing of the two photons is incoherent; i.e., the characteristic
function for the two-photon case is the square of the one-
photon characteristic function9 rather than the characteris-
tic function .of a two-photon Fock state, 12). Hence, after
averaging over the possibilities, the characteristic function
for the contribution from each scattering element is

C0(, V*) = (1 - PI - P2)1 + p1 (l - 1t12) + P2(1 - kY2)2
(25)

or

C0 (Q, t*) = 1 - ( + 2P2)I1I2 + P2k14.

C(Q, i*) = GN1 - Gm(l12)i1 (31)

where GN is the generating function for the random variable
N. For comparison, the corresponding probability-generat-
ing function for the compound classical process consisting of
the sum of a random number (N) of independent identically
distributed random variables (me) defined by

N

n = E M
i=O

(32)

is

GI(1 y) = GN[1 - Gm(y)]. (33)

The rth factorial moment is obtained by differentiating r
times with respect to (-y) and then setting y to zero. For
the quantum case the factorial moments are obtained by
differentiating r times with respect to t and r times with
respect to -* and then setting t to zero. After performing
the required differentiations , we have, for the mean of the
photon number n,

(n) = (a+a) = d-da C(, *) =o= (N) (m); (34)

i.e., the average number of photons is the average number of
scattering elements times the average number of photons
scattered per element. The same well-known result is found
for the mean of the classical process by using Eq. (33). Fur-
ther differentiation of Eq. (31) yields the second factorial
moment, related to the mean-square intensity, as

(n(n - 1)) = 2(N(N - 1)) (M) 2 + 2(N) (m(m - 1)), (35)

or, for the normalized factorial moment of the photon num-
(26) ber and for the normalized second intensity moment,

(22)
we have
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(12) (n(n- 1)) = 2 (N(N-1)) + (m(m-1) 
(I) 2 (n ) 2 (N 2 (N) (M) 2 J

(36)

This is exactly twice the result that we obtain for the classi-
cal process by differentiating Gi(y) twice with respect to y.
Hence we see that the factor-of-2 increase in the second
factorial moment related to the Hanbury Brown-Twiss ef-
fect of photon clumping for thermal (Gaussian) light also
appears more generally in random superposition models,
even for non-Gaussian fields.

For spontaneous emission or the scattering of a laser beam
(in approximately a coherent state) we would expect the
number of elementary sources of the photons to have a
Poisson distribution. Assuming that each such source con-
tributes at most one photon, with probability p, to the re-
ceiver aperture, we have

GN('Y) = exp(-(N)-y) (37)

and

Gm(-y) = 1 - p. (38)

Using these generating functions in Eq. (31), we obtain

C(Q, *) = exp(-p(N) 1t2 ). (39)

This is the quantum characteristic function for a Gaussian
field, which is well known to imply Bose-Einstein photon
statistics, as is appropriate to a thermal (or pseudothermal)
field. Note that it is obtained here without recourse to
limiting procedures needed for applying the central-limit
theorem.

Next, choosing a negative binomial distribution for the
number of scattering elements as before, we have

C(4, 4*) = {1 + (N) [1 - Gm(k2 )]} (40)

This could form the basis for a unified approximation
scheme generalizing the model of K-distributed noise, valid
in both the weak and the strong scattering regimes. In
general, the inversion of this characteristic function to ob-
tain P(daI) could be done numerically. In fact, only finite
moments need be calculated, in general, and these may be
obtained analytically from this form by repeated differentia-
tion with respect to and -4*. This provides moments of
the intensity or, equivalently, the factorial moments of the
photon-number distribution. Hence we do not need the full
inversion to compare any postulated form of Gm with experi-
mental results.

By differentiating Eq. (40) we obtain the second factorial
moment, related to the mean-squared intensity, as

(n(n-1)) = 2(1 + 1/ (N) 2(m) 2 + 2(N) m(m-1))
(41)

or, for the normalized factorial moments of the photon num-
ber and for the normalized second intensity moment,

(J) (n(n - )) = 2(1 + 1/) + 2 (rn(m 1)) * (42)

Note that the first term in Eq. (42) is that obtained for K
noise3; the enhanced fluctuations represented by the sec-
ond factor are nonzero only if both (N) is finite and there

can be more than one photon scattered from each elemen-
tary scattering element.

One final generalization of K noise, suggested by the I-K
distribution of Phillips and Andrews,5 is to include a deter-
ministic coherent field with the randomly scattered field.
We do this by multiplying the quantum characteristic func-
tion for K noise [Eq. (14)] by the characteristic function for a
coherent state, obtaining'0

C(Q, 4*) = exp(oa0* - V*a )(1 + M Pj1t2)_ (43)

The P representation corresponding to this characteristic
function is simply Eq. (21) with the replacement a - a - ao0 .
Although this model obviously reduces to K-distributed
noise when the amplitude of the coherent component is zero,
as does I-K-distributed noise, it is not identical to the semi-
classical model of Ref. 5. In fact, calculating the second
factorial moment from Eq. (43) yields

(n(n - 1)) = ao1 + 4p(N)1a012 + 2(p(N))2 / 1, (44)

where the last term is the correct result for K-distributed
noise when a 0 is zero. This is not the same as the corre-
sponding result for I-K noise,

(12) = A4 + 2 0 + 1 p(N)A 2 + 2(p(N)) 2 + 1,

except when = 1.

DISCUSSION

(45)

The models of random superposition of independent field
contributions presented here are shown to reproduce known
fluctuation phenomena for thermal fields and for fields re-
sulting from laser-light scattering in a turbulent atmo-
sphere. By formulating the light as a quantum field, it is
demonstrated that the photon-bunching characteristic of
the Hanbury Brown-Twiss effect appears with exactly the
same twofold increase in intensity fluctuations over a classi-
cal particle result, even when the model implies non-Gauss-
ian fields.

Although there is an expanding body of experimental and
theoretical results increasing our understanding of scintilla-
tion and laser-propagation phenomena, many of the success-
ful theories are of a heuristic nature. By identifying the
minimal assumptions necessary to fit experimental data, the
modeling and understanding of such phenomena can be put
on a firmer theoretical foundation. Such a formulation also
suggests natural directions for generalizing existing models.
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