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Abstract. A method is found for calculating the number generating function of a harmonic 
oscillator density matrix directly from the quantum characteristic function. This technique 
is used to interpret thermal noise in a model for an optical detector. The results clearly 
reveal an earlier misinterpretation and emphasise that the thermal noise is a statistically 
independent amplitude in the detector/harmonic oscillator which is superposed with an 
amplitude having the same statistical nature as the incident optical field. 

1. Introduction 

Characteristic functions and generating functions have found wide applicability in 
statistical physics (Klauder and Sudarshan 1968). In quantum optics they are used as 
tools for calculating statistical fluctuations of the optical field or other harmonic 
oscillators. In particular, generating functions for the photon number probabilities 
(diagonal elements of the density matrix) are often used to determine the photocount- 
ing statistics. 

However, the generating function is not completely equivalent to the density 
matrix as phase information is lost. Information concerning the origin of a given field 
as the combination of several independent fields is often obscured. This happens 
because in forming a state by superposition, one must add the associated quantum 
mechanical amplitudes, leading to phase-dependent interference effects for the 
various physical quantities of interest. 

The characteristic function provides an alternative description of the density 
matrix which retains all of the associated phase information. In particular, a charac- 
teristic function for a superposition of two independent fields will factor into the 
product of the characteristic functions for the independent states that have been 
combined. Because the generating function contains less (but sometimes more directly 
usable) information than the characteristic function, i t  is desirable to have a means of 
calculating the former given the latter. 

The transformation from the characteristic function to its corresponding generat- 
ing function presented here should also aid in the interpretation of complicated 
generating functions and facilitate the identification of independent processes which 
contribute to the result. 
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2. Calculation of the generating function from a characteristic function 

In this section we derive a method for calculating the generating function correspond- 
ing to any given characteristic function. This direct transformation may be contrasted 
with the method used by Rockower er a1 (1978) in which the equation of motion for 
the density matrix is used to determine the generating function through calculations 
which are independent of the derivation of the characteristic function. 

The number generating function for the density matrix p is defined by, 
m 

where at  and a are the creation and annihilation operators, respectively, and 

11- y / <  1. 

~ ( 5 ,  t*) = tr[p exp(ta+) exp(- t * a ) l .  

The normally ordered quantum characteristic function is defined by 

(2) 

Taking the m th derivative of C( t , t * )  with respect to 5 and [* and evaluating at zero 
yields 

The mth derivative of G(y),  evaluated at zero, yields the mth factorial moment, 

It is well known that the two expressions on the right-hand sides of equations (3) and 
(4) are equal (Klauder and Sudarshan 1968). Using this equality in a McLaurin series 
for the generating function, we obtain 

Expressing 6 in terms of its real and imaginary parts, 

t = x + i y  and t * = x - i y ,  

we have 

We use the following relation, easily verified by using the convolution theorem of 
Fourier transforms: 
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Making use of this twice, we obtain the general relation between the characteristic 
function and its generating function? 

1 " "  
G ( y )  = -/ / exp( T) C([, [*) d2[. 

TTTy -m -m 

This is the main result of this section. 

3. Examples 

We can apply this result to the special case of a coherent state la), defined by 
ala) = ala), for which 

C([, [*)= exp([a* -[*a). (7 ) 

G ( r )  = exp(- v,), (8) 

Using equation ( 6 )  we readily obtain 

where n, = laI2. This is the generating function for a Poisson distribution, as expected. 
If we consider a Gaussian amplitude, with mean excitation number nr, the quan- 

tum characteristic function is well known to be 

Substituting this in equation (6 ) ,  we easily obtain the generating function for the 
Bose-Einstein distribution, 

G ( y ) = ( l + n r y ) - ' .  ( 1 0 )  
The superposition of the above two independent amplitudes (i.e., 'signal plus 

noise') is represented by the product of their characteristic functions, 

~ ( 6 ,  [ * ) = e x p ( - / 5 1 ' n r + [ a * - [ * a ) .  (1 1 )  
Again using equation (6) along with standard integrals, we find the generating 
function for the superposition of a coherent 'signal' with Gaussian 'noise', 

G ( r )  = ( 1  + nry)-' exp[ - m r / ( l  + nrv ) l .  ( 1 2 )  
This is also a standard result (Klauder and Sudarshan 1968, Glauber 1966)$ although 
our derivation using equation ( 6 )  is perhaps simpler. 

In the appendix, we apply equation ( 6 )  to a less standard situation. 

4. An application to noise in a detector 

In addition to its computational value, this transformation may be used to interpret 
complicated generating functions where the contributions of independent sources may 
be obscured. One such application can be made to the recent derivation by Tatarskii 

t A similar calculation yields a corresponding result for the relation between the characteristic functions of x 
and xz, where x is a classical random variable. 
$ Klauder and Sudarshan derive this generating function for the counting distribution for a classical signal 
plus noise. Glauber reaches the same result for the generating function derived from the superposition of 
coherent and thermal fields in the P representation. 
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(1974) of the generating function for a photodetector illuminated by a multimode field 
in an approach free from the limitations and approximations of perturbation theory. 

The detector is modelled as a harmonic oscillator (following Glauber 1969) so that 
the task becomes the solution of the Schrodinger equation for an oscillator interacting 
with a multimode optical field. This leads to calculation of the probabilities that the 
detector/oscillator makes transitions to various coherent states. 

Results are obtained for illumination of the detector by a coherent field. When the 
detector is initially in its ground state, interaction leads to the following generating 
function for the detector: 

Q,(Y = exp( - ynr), (13) 

where n, is a function of time. This is the generating function for a Poisson dis- 
tribution as expected in photodetection of coherent light (Glauber 1963). For initial 
thermal excitation (of mean nT) of the detector, the result for interaction with a 
coherent field is 

Q ~ ( Y )  = (1 + nry)-* exp[ - n,y( l  + nry)-'I. (14) 

The two factors in equation (14) were identified by Tatarskii as being caused by 
two statistically independent sources of counts in the detector. Since the first term 
alone is the generating function for the thermal fluctuations in the detector without 
illumination (n, = 0), the second term was identified as the statistically independent 
response of the detector to the incident field. It was concluded that the response was 
distorted from equation (13) by the temperature of the detector. 

This interpretation can be challenged on several grounds. A factoring of the 
generating function does not prove the existence of independent sources. Any 
generating function can be separated arbitrarily into the product of a desired generat- 
ing function and a residual factor. The underlying nature of the system must be 
examined before one can justifiably claim the existence of statistically independent 
sources. 

The result in equation (14) can, in fact, be identified as the generating function for 
a mixture of Gaussian (thermal) noise and a coherent signal in the detector (see 
equation (12)). 

In this interpretation, there are two statistically independent 'fields' which have 
been superposed to form the state of the detector/oscillator. The characteristic 
function for such a superposition is just the product of the two characteristic functions 
for these amplitudes separately. As shown in P 3, a generating function of the form in 
equation (14) readily results. 

Further evidence that this is the proper interpretation is found elsewhere in 
Tatarskii's derivation. There he showed explicitly that the amplitude of the detec- 
tor/harmonic oscillator is linear in the field and detector initial conditions. Thus the 
final state amplitude is the sum of a field-dependent term and a term arising from the 
initial state of the oscillator. This addition of amplitudes confirms that it is the 
factoring of the characteristic function (of the amplitude), not the number generating 
function, which comes from two independent contributions. 

The state of the detector is thus a superposition of an amplitude with the same 
statistical nature as the optical signal and a thermal noise amplitude due to the finite 
temperature of the detector. The characteristic function is then of the form: 
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The value of nr can be determined by blocking the optical illumination. Since the 
moments of C1 are uniquely determined by nT and the measured moments of C, the 
photocount statistics of the optical field can be unambiguously determined. 

This improved interpretation brings these results into agreement with Mollow’s 
(1968) non-perturbative treatment of a detector model. The model differs from 
Tatarskii’s in that a large number of harmonic oscillators make up the detector. The 
evolution of a field-detector system was derived to all orders of perturbation theory. 
Among other more formal results it was shown, consistent with equation (13), that if 
the field is initially in a coherent state, it remains coherent throughout its interaction 
with the detector. 

A comparison with earlier work on a quantum mechanical forced damped 
harmonic oscillator interacting with the field to lowest order in perturbation theory is 
also possible. Carusotto (1975) and Glauber (1969) show that the characteristic 
function, in general, factors into three independent terms: one representing the 
damping of the initial state of the oscillator, a second depending on the driving field, 
and a third describing thermal fluctuations arising from interaction with a reservoir. 
The interpretation presented here for Tatarskii’s non-perturbative approach indicates 
that the basic evolution, in terms of statistically independent amplitudes, is retained in 
the exact solution. 
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Appendix 

In this appendix we derive the form of the number generating function corresponding 
to the case in which the Hamiltonian contains terms of the form 

1 [ ~ j k ( t ) a r ( r ) a : ( f ) + H C ] .  
ik  

These terms arise in models of Raman and Brillouin scattering, in simple models of 
parametric amplification, or if one does not make the standard rotating wave approxi- 
mation in the coupling of harmonic oscillators to the electromagnetic field. One sees 
that the solution to the equations of motion for ak and a: can be written in terms of 
the initial values (Mollow 1967) as, 

The situation corresponding to equations (7) and (13) is that in which one of the 
modes (e.g., the detector), is initially in the ground state and the others are in coherent 
states. Using equation ( A l )  for j = 1 in equation (2) and the Baker-Campbell- 
Hausdorff relations, we can express the characteristic function for the first mode (the 
detector) in terms of the initially independent characteristic functions of all of the 
modes. We obtain the form 
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A similar characteristic function has been obtained for a model of parametric 
frequency-splitting in which the fields are initially in the vacuum state (Mollow 1973). 
Inserting this expression in equation (6) ,  we obtain a photon number generating 
function of the form 

This confirms Mollow’s observation (1967) that an initially coherent state vector does 
not remain so in the presence of this type of coupling, and hence the photon number 
distribution is no longer Poisson. 
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