Laser beam-quality/aperture-shape scaling relation

Edward B. Rockower

Many high-energy lasers (HELSs) have noncircular output apertures. Some are rectangular in shape with or
without a central or noncentral (up to 30%) obscuration. However, most high-energy laser propagation codes
(especially those developed for systems analysis) model the aperture as either an unobscured circle or as a
circle with fixed (e.g., 10%) obscuration. We present a beam-quality/aperture-shape scaling relation which

can be useful when applying these codes to realistic designs for HELs.

Our analysis also yields a generalized

formula for angular size of the Airy disk and definitions of a characteristic aperture length and aperture

quality.

1. INTRODUCTION

Development of computer codes for nonlinear laser
beam propagation through turbulent atmospheric
conditions, including smoke and dust, has required
(and received) a large amount of modeling effort (see
e.gz., Ref. 1). However, other important features of
high-energy lasers (HELs) include the rectangular ap-
erture and large (possibly up to 30%) central obscura-
tion. Thelatter is charactefistic of unstable resonator
designs common to most high-energy lasers.

Two major categories of ¢computer code have been
developed for modeling HEL propagation:

(1) Fundamental wave optics.codes: these codes
start from the basic microscopiclaws of E-M radiation
and implement various phenomenological models of
the atmospheric turbulence and particulates (e.g., Ref.
2). ’ .

(2) Moderate accuracy system-level scaling law
codes: these codes start from phenomenological and
analytical approximations to the E-M wave equations
and attempt to represent the details of propagation
through the atmosphere with a few parameters (e.g., a
phase integral) based on integrated properties of the
atmospheric conditions, light intensity, wave length,
etc. These codes are based on éxperimentally and
numerically (from the fundamental wave optics codes)
derived data bases.3

One limitation is common to many laser propagation
codes (especially the system’s analysis codes), namely,
the code may handle only circular laser apertures.
This limitation has not stopped application of the
codes outside their range of validity.

In attempting to exercise such a propagation code to
simulate performance of rectangular aperture lasers, it
is reasonable (because of possible nonlinear effects) to
try to match the output power and beam intensity of
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thereal laser. Ifthe former condition is met, the latter
is equivalent to requiring that the area of the circular
aperture be the same as for the real laser, and, there-
fore,

wD¥4 = A, 0]

where A is the rectangular aperture area (excluding
obscured regions) and D is the circular aperture diame-
ter.

The following analysis estimates the adequacy of
modeling realistic HEL apertures as circular apertures
and leads to the derivation of a beam-quality/aper-
ture-shape scaling relation. A generalization of the
Airy disk size and shape-dependent characteristic ap-
erture-length and aperture-quality parameters are
presented based on this analysis. We then apply the
scaling relation to one of the system’s analysis propa-
gation codes to demonstrate an application of the scal-
ing relation.

II. Derivation of the Scaling Relation

An asymptotic approximation formula for estimat-
ing the fraction of encircled energy within a given
radius in a plane perpendicular to the direction of
propagation has been derived for imaging systems with
oddly shaped apertures.* Modulation transfer func-
tion (MTF) techniques were applied to a uniformly
illuminated aperture having arbitrary shape and obs-
curations resulting in the following formula:

E(r) =1~ MR/(27%), 2

where A = wavelength
[ = effective focal length,

r. = radial dimension in the focal plane,

R = HEL aperture perimeter/area ratio, and

E = normalized encircled energy, i.e., the frac-
tion of the energy transmitted by the aper-
ture that falls within a circle of radius r
about the geometrical focal point.

The main feature of this result for our purposes is
that, apart from the laser wavelength and system focal
distance, the fraction of encircled energy depends only
on the ratio B/r. Hence it is independent of details of



the aperture shape apart from the value of B. In the
derivation it is assumed that the laser beam propagates
in a linear medium with no effects of atmospheric
fluctuations, wind, etc. We see from Eq. (2) that the
radius r encircling a given fraction of energy increases
linearly with R.

A related effect results from imperfections of the
laser wave front at the point where the beam leaves the
laser aperture. A degraded beam quality (phase front
distortion) is often represented with a beam quality
parameter M. The value of M is always greater than or
equal to 1 and is given as times diffraction-limited; i.e.,
the beam spread is M times the diffraction-limited rate
of beam divergence. Most, if not all, propagation
codes allow the user to set M. If E(r) is the encircled
energy function when M is equal to one, for arbitrary
M, the encircled energy becomes

E'(r) = E(r/M). 3)
Combining the two results for beam spread, we obtain
E'(r) = 1 — \MR)(f/r)/(27?). (4)

From Eq. (4) we identify a method of partially com-
pensating for rectangular apertures and various sizes
and types of obscuration. We see that the asymptotic
spread of light emanating from two laser apertures
having the same value of the product A\MR will be the
same. Hence a better approximation to an arbitrary
aperture results if we require

MR = MR (5

Two lasers with the same value of M*R, power, and
aperture area (hence the same intensity) will have
approximately the same asymptotic beam divergence.
This is the main result of this section.

This aperture-shape/beam-quality similarity (or
scaling) relation is to be distinguished from the so-
called similarity law of diffraction,® which compares
diffraction from two apertures of geometrically similar
shape but different size.

Having two parameters for the equivalent circular
aperture at our disposal (M’ and D’) allows us to match
both area and ratio R of any HEL aperture. For
example, we can model a circular aperture with a cen-
tral obscuration with another circular aperture of the
same area and output power and with beam quality M’
satisfying Eq. (5). These requirements lead to

M =M1 ++/F)/+/(1-F), 6)
D’'=Dy/(1-F), )

where F'is the fraction obscuration.

It is easy to derive similar equations for rectangular
apertures with and without (rectangular) obscura-
tions. The results for the latter and for circular aper-
tures are presented in graphic form in Fig. 1. Each
curve gives the beam quality of an equivalent uniform
circular aperture with the same area as the rectangular
aperture whose length to width (L/W) ratio is shown to
the right of the curve. The curve for a circular aper-
ture with obscuration F is also presented.
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Fig. 1.

Note that any aperture can be characterized by the
ratio R/R’. This is the value of the dimensionless
parameter M’ satisfying Eqgs. (5) and (1) with M set to
one. Since the circle gives the minimum beam spread
for a given aperture area (the minimum value of R), M’
(i.e., R/R’) indicates the (inverse of) beaming effective-
ness of the aperture, i.e., the actual beam spread rela-
tive to this ideal (achieved for a circular aperture and
perfect beam quality). We propose calling this quan-
tity the aperture quality in close analogy with beam
quality. For example, a square aperture has an aper-
ture quality of 2/4/7. The aperture quality, like beam
quality, is always greater than one. An alternative
interpretation of Fig. 1 is as a plot of aperture quality
(the ordinate) for various aperture shapes. With this
definition of aperture quality, Eq. (5) can be stated in
words as “two apertures having the same product of
beam quality times aperture-quality will produce the
same asymptotic encircled energy function.”

ii. Characteristic Length Parameter and Diffractive
Beam Spread

For an unobscured circle the ratio of perimeter to
area is

1May 1986 / Vol. 25, No. 9 / APPLIED OPTICS 1395



R =4/D, 8
and for a square with side a,
R = 4/a. 9)

This suggests defining a parameter L, the characteris-
tic linear dimension of an arbitrarily shaped aperture
as :

L = 4/R. (10)

Reference to our scaling relation, Eq. (5), suggests that
for arbitrary M an effective aperture dimension is

L’ = 4/(MR). (11)

For a rectangle of sides a and b, R is found to be

R = 2(a + b)/(ab). 12)
Hence for a rectangle the characteristic length (if M =
1) is
L = 2ab/(a + b) (13)
or
1/L = (1/a + 1/b)/2. (14)

In other words, orthogonal dimensions are averaged
using the harmonic mean rather than (for example) the
geometric mean. Similar equations are easily found
for other aperture shapes.

We now quantify more precisely our observation

that the diffractive beam spread will be linearly pro-
portional to the product (\MR). For a uniformly illu-
minated circular aperture the diffraction pattern was
first derived by Airy (Ref. 6, p. 396ff). In our notation,
the half-angular size of the first dark ring in the Airy
pattern, encircling 0.838 of the transmitted energy, is
well known to be

0 = 1.22)\/D. (15)

Generalizing this, let r now represent the radius of a
circle containing 0.838 of the transmitted energy from
ageneral aperture with beam quality M. Using Eq. (4)
we obtain the relation

0.838 = 1 — AMR(f/r)/(272). 16)

Now, solve Eq. (16) for r/f, the half-angle containing
almost 84% of the energy:

r/f = 0.31AMR. (%))

Using our definition of L and letting 6§ now represent
(r/f), this can be written approximately as

0 = 1.22AM/L. (18)

Equations (10) and (18) generalize Eq. (15) to arbitrary
aperture shape and beam quality.
If the aperture is an unobscured circle and for M

equal to one, this reduces to Eq. (15). Also, for a
square with side a we obtain
0 = 1.222M/a. (19)

These results are consistent with our use of Eq. (10) for
a characteristic aperture length and Eq. (18) for the
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angular beam spread from an aperture of arbitrary
shape. Finally, note that it may be helpful in some
cases to calculate the Fresnel number of an optical
system using the characteristic length L rather than
the aperture diameter.

IV. Application of the Scaling Relation

We have exercised the HELAWS code (containing
BRLPRO and contained in EOSAEL)” with the following
questions in mind:

(1) How adequate is it to represent a centrally ob-
scured and/or rectangular aperture by means of a cir-
cular aperture with the same overall area, power, and
(therefore) intensity?

(2) Given that we would like to represent different
aperture shapes and obscurations with our similarity
transformation, how good a fix can be obtained in the
presence of linear atmospheric effects such as turbu-
lence and wind?

(3) How good is our transformation in the face of
nonlinear effects, i.e., thermal blooming?

Figures 2-4 were generated with HELAWS using vari-
ations of the base case parameters listed in TableI. In
each figure, curve 1 represents the results for a refer-
ence uniformly illuminated circular aperture of 1-m
diameter D, beam quality equal to one. Curve 2 pre-
sents the results for a uniformly illuminated circular
aperture with a 10% central obscuration but with the
same area and beam quality (i.e., M = 1) as the base
case. Since Fis 0.1, Eq. (7) yields an aperture diame-
ter I of 1.0564 m. Finally, curve 3 presents the results
for a uniformly illuminated circular aperture (no ob-
scuration), equal area as before, but with beam quality
(1.387) calculated from our scaling formula (or Fig. 1).

In other words, curve 2 corresponds to the real HEL
aperture with 10% obscuration. Curve 1 is what we
predict for an unobscured circular aperture matching
only the area. Curve 3 results if we also match the
scaling parameter M*R. First, refer to Figs. 2 and 3,
showing the 1/e spot diameter and 1/e peak fluence,
respectively, in the absence of thermal blooming.
Comparing curves 1 and 2 shows that simply trying to
represent a 10% obscuration with a circular aperture of
equal area would lead to gross errors. Itiseasy toshow
that there is a rectangular aperture (L/W ~1.9) with
the same area and value of R as the 10% obscured
circular aperture. Hence by the encircled energy
theorem the rectangle will have the same asymptotic
beam spread as the obscured circle (curve 2). Clearly,
if one tries to represent such a rectangle with the
unobscured circular aperture (curve 1), the same gross
errors will result, even without thermal blooming.

However, for curve 3 (for which M is set using the
scaling relation) the match is excellent beyond ~4300
m. Thisrange defines the beginning of the asymptotic
region for this example. Two things are worth noting
here: (1) the M*R = const similarity relation works
quite well becoming better as the range increases; (2) it
works well even for propagation in the turbulent atmo-
sphere.

Consulting Fig. 4 in which the thermally bloomed
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Fig. 4. Thermally bloomed 1/e spot diameter vs range.

Table I. Input Quantities for HELAWS (BRLPRO) Code

Laser parameters

Operating mode
Wavelength

Total system jitter (1 sigma)
-Variable focal range

Energy per pulse

Pulse repetition rate

Pulse duration

Atmospheric parameters
Ambient temperature
Relative humidity
Turbulence level
Refractive-index structure const
Magnitude of wind velocity

Repetitively pulsed
10.6 ym

10 purad

Equal to target range
10 kJ

5Hz

20 us

10°C

85%

Moderate

8.40 X 1014 273
1.0m/s

1/e spot diameter is plotted, we see that using the
scaling relation (curve 3) gets us only about halfway to
the 10% obscured aperture results (curve 2). Howev-
er, the codes handle the 10% obscuration case already,
and we are only looking for a means of extending the
range of existing propagation codes to include larger
obscurations and rectangular apertures.

V. Conclusions

The beam-quality/aperture-shape scaling relation
has been derived under conditions most appropriate to
free-space propagation for lasers with constant pupil
function. Its extended usefulness has been demon-
strated in an application to linear laser propagation
within the turbulent atmosphere using a representa-
tive scaling law code (BRLPRO). In the presence of
thermal blooming the scaling law remains partially
effective and may still be useful as a partial fix. Our
analysis has also provided a generalization of the Airy
expression for the angular spread of light from a laser
aperture of arbitrary shape and beam quality. New
definitions for a characteristic aperture length and an
aperture-quality factor allow comparison of diffrac-
tion characteristics of different aperture shapes, inde-
pendent of wavelength.
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