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Recently, the question of the origin of correlations in thermal light has again been debated. The alternative

viewpoints suggest that (i) stimulated emission causes the correlations implied by Bose-Einstein statistics and

exemplified by the Hanbury Brown-Twiss effect, or (ii) stimulated emission coherently amplifies any initial

field, with no change in the nature of photon statistics, apart from the addition of, and interference with,

spontaneous-emission noise. It is shown that two essentially difFerent physical models have been considered

. previously, with many results being only approximate. For these models we obtain the evolution of the

photon statistics by deriving exactly the generating function for the diagonal elements of the field density

matrix and the quantum characteristic function. The source of Bose-Einstein correlations is seen to be merely

the interference in the superposition of 'random independent fields from. a chaotic source, spontaneous

emission being one example. Extending the investigation to a nonlinear model, we show that, although there

is no longer coherent amplification, it is still not correct to infer that this interaction, which produces the

amplification, also leads to Bose-Einstein statistics.

/

I. INTRODUCTION AND SUMMARY

In a recent series of papers, the origin of Bose-
Einstein (BE) correlations has been ascribed ei-
ther to the stimulated emission inherent in the
generation of light from a thermal source' ' or to
the random superposition of the spontaneous emis-
sions which is then coherently amplified by the ac-
tion of stimulated emission. ' " According to the
former viewpoint, any additional photon correla-
tions arising from subsequent amplification of
this chaotic light (or any other, possibly coherent,
light) are just what one should expect from the ac-
tion of the stimulated emission process. However,
according to the second viewpoint, the added pho-
ton correlations result from the interference of
the coherently amplified input field with the Gaus-
sian spontaneous emission noise which is inherent
in the light amplification process. .

A laser amplifier operating far below the lasing
threshold, so that saturation effects are not im-
portant, is well known to be describable as a lin-
ear amplifier plus a Gaussian noise source. '
%hether this is consistent with the discrete emis-
sion of photons by atoms and the quantum nature
of the field is at issue. In an experiment" designed
to detect any deviations from linear amplification
of the spontaneously generated light, Scarl and

. Smith found no excess photoelectron pair correla-
tions in a detector illuminated by a He-Ne dis-
charge tube apart from those to be expected from
the ordinary Hanbury Brown Twiss effect" for
linearly amplified spontaneous emission noise.
However, this result has also been interpreted as

being consistent with the first mentioned view-
point' in that the additional correlations from the
amplification process have been said to result
from those stimulated emissions which are also
responsible for the amplification.

Given that the results of experiment (and of
some calculations) are subject to interpretation,
one tries to determine, theoretically, whether or
not stimulated emission amplifies coherently. Al-
though stimulated and spontaneous emission are
fundamental}y inseparable processes in a second-
quantized theory, one seeks to know if in certain
situations their effects are separable and if so
how they serve as sources for the observed cor-
relations.

Several approaches have been pursued in the
theoretical investigation of this problem, with the
proponents of each one apparently feeling that the
issue was settled. A number of investigators have
identified certain terms in (i) the equation for the
time evolution of the radiation field density matrix
in the number representation, '""' (ii) Einstein's
derivation of blackbody radiation, ' ' or (iii) the
Fokker-Planck equation in the P representation, ""
as corresponding to stimulated or to spontaneous
emission processes. Although recognizing that
such identifications may be largely of pedagogical
value, and may be valid only to first order of per-
turbation theory, they draw conclusions about the
effects of these terms on the evolution of the pho-
ton statistics. While some of these investigations
of the evolution of the field fluctuations were only
approximate (perturbation) solutions of partial
properties (first and second moments only) of the
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distribution, we will solve, exactly, for the pho-
ton number generating functions for the proposed
spontaneous emission, stimulated emission, and
combined model equations.

Another approach has been to investigate the
properties of the quantum characteristic function
which we define as"

&(C, g) = tr[p exp(ra') exp(qa)] . (l)

By noting that the characteristic function de-
scribing the field produced by an unsaturated am-
plifier factors into independent components, "in-
cluding a linear amplification term and an ampli-
fied Gaussian noise term, the effects of linear
amplification and additive noise have been attribut-
ed to stimulated and spontaneous emission, re-
spectively. '"' In no case has the source of
these effects been identified in the basic operator
equations. We will show that the separate effects
have their origin in particular terms in the oper-
ator time evolution equation of the density matrix,
and we will justify the association of these terms
(and their effects) with stimulated and spontaneous
emission. We will also derive the characteristic
function more simply and with a method which is
perhaps more easily generalized to multiphoton
processes.

In addition to the different mathematical meth-
ods one can use and the problems associated with
trying to separate spontaneous and-stimulated ef-
fects, we suggest that part of the conceptual dif-
ficulty that has been experien~ced has resulted
from the existence of at least two, essentially dif-
ferent, physical models. A laser-amplifier model,
of a large number of atoms coupling to a mode of
the electromagnetic field in a cavity and with a
constant population of the upper and lower atomic
levels may plausibly lend itself to the idea of lin-
ear and coherent amplification of an impressed
field. This model has been considered by authors
of both viewpoints. "'" On the other hand, the
possibility of excess photon correlations arising
from stimulated emission s|.ems more compatible
with the idea of a single atom, initially in an ex-
cited state, interacting with an incident electro-
magnetic fi.eld and possibly making a transition-
to the ground state after a spontaneous or stimu-
lated emission. ' It should not be surprising that,
as we will show, this model leads to conclusions
different from theories involving linear amplifi-
cation plus noise, but this is true only because of
the nonlinear nature of the exact solution. How-

ever, to lowest order in time, the single-atom
model can be interpreted in the same manner as
was the laser-amplifier model. "

To aid us in understanding the role played by
the physical model, we extend our considerations

to include the following systems interacting with
a single mode of the radiation field: (a) the exact,
single, isolated atom (ESA); (b) the single, iso-
lated atom (SA) to lowest order in time; (c) the
unsaturated laser (UL) amplifier, a many-atom
case corresponding to SA"; (d) The laser oper-
ating above threshold, a nonlinear many-atom
case."

We will study (a) and (c) in detail, comment
briefly on (b), and allude to well-known results
for (d). The statistical effects vary among these
models and consideration of them will help us to
.understand the consequences of stimulated emis-
sion (when it can be identified) and of wave inter-
ference for the evolution of photon statistics.

Finally, Glauber'4 has shown that the quantum
superposition of many independent fields leads to
BE statisti. cs. In those cases in which'the stimu-
lated emission leads to coherent (linear) amplifi-
cation and therefore does not change the photo-
count statistics (i.e. , SA and UL), the spontaneous
emissions act as this source of many independent
waves. In those cases involving nonlinear ampli-
fication, the interaction does not factox' and 'thus

the change in the statistics cannot be attributed to
the separate action of stimulated or spontaneous
emission. It is .easily shown, however, that BE
statistics are either not present or are not con-
served in time by these processes.

We therefore conclude that wave interference
effects give rise to the BE statistics of light. In
those cases c'haracterized by norilinear interac-
tions, BE statistics typically do not occur.

/

II. PHYSICAL AND MATHEMATICAL BACKGROUND

For simplicity, we consider a single mode of
the electromagnetic field, for which a and a~ are
the annihilation and creation operators. The
atoms interacting with the field possess a signi-
ficant electric dipole matrix element for transi-
tions between two energy levels whose energy
separation h~ is equal to the energy of one photon
of the field. We consider them to be (for our pur-
poses) two-level atoms for which the raising and

lowering operators are a+ and o, respectively.
The interaction Hamiltonian for each atom in the
rotating-wave approximation (HWA) is assumed
to be

in which the coupling constant g contains both the
electric-dipole matrix element and appropriate
dependence on the atomic positions in the mode of
the field which is being considered. "'" Hence,
we are considering the one-photon interaction with

a resonant medium consisting of one or more
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atoms, whose state will be specified more fully
below.

To fix notation, we now define the appropriate
statistical quantities with which we will deal. The
density matrix of the electromagnetic field p con-
tains complete information about the time evolu-
tion of the field statistics. This is defined to be
the reduced density matrix obtained from the com-
plete atom-field density matrix by tracing over
the atomic variables. The quantum characteristic
function C(g, q) was defined above. It contains all
the information which is contained in the reduced .
density matrix. Arbitrary moments of the crea-
tion and annihilation operators, such as

((a') "a")-=.tr[p(at) a"],
may be obtained by m th and nth order differentia-
tions with respect to the arguments of C(g, g) and
then setting the arguments equal to zero. As will
be shown below, in certain cases the character-
istic function is the most convenient for deter-
mining the evolution of the photon statistics since
interference effects arising from the superposi-
tion of independent fields can be disentangled. Fa-
miliarity with the characteristic functions of vari-
ous distributions allows one to identify the statis-
tics of the field.

In certain cases it is more convenient to derive
the photon- number generating function. Although
it contains information only about the diagonal
elements of the density matrix, it is just this in-
formation which is sometimes most readily inter-
preted. The generating function is defined. by

n=o

in which convergence is guaranteed for ~s~ & 1. The
factorial moments, which are related to the mo-
ments of the intensity" (when they. can be defined),
are obtained by repeated differentiation with re-
spect to z, followed by setting z =1. The avail-
ability of the factorial moments allows one, to ob-
tain information concerning the field-intensity
fluctuations. In the case of superposition of inde-
pendent fields, however, the photon-number' gen-
erating function does not factor because of inter-
ference effects. Thus, it is not always possible
to identify separate contributions from examina-
tion of the generating function. "

In the following, we shall investigate various
models of stimulated and spontaneous emission
and obtain the differential equations satisfied by
the quantum characteristic function, and other
differential equations and relations satisfied by
the generating functions. Solving these differen-
tial equations, we will have the desired informa-
tion concerning the field statistics.

III. UNSATURATED LASER AMPLIFIER

+(adjoint), (4)

whereA. =2F 'g'N„B =2F. 'g'N„and F is the
width of the transition between the upper and lower
states, whose populations are N, and N„respec-
tively.

The evolution of the diagonal matrix elements
p„=(n~p~n) obtained from Eq. (4), is given by

p„= A(n+1)-p„-Bnp„+Anp„~+B(n+1)p„+, . (5)

It has been shown by several authors that this
equation preserves the-statistics of a Bose-Ein-
stein distribution. '~" ' ' In seeking the source
of the BE correlations, various terms in Eq. (5)
have been associated with either spontaneous or
stimulated emission. One suggestion for the evo-
lution of the diagonal terms in the density matrix
resulting from the stimulated emission only, '
p„= Anp„Bnp-„+A(n -—1)p„,+B(n +1)p

is obtained by replacing n by n —1 in the coeffi-
cients of A in Eq. (5).

. Because the total transition rate from n to n +1
photons is well known to be proportional to n+1,
where the 1 is associated with spontaneous emis-
sion, the above replacement supposedly deletes
the effects of spontaneous emission. The terms
in Eq. (5) which are missing from Eq. (6) presum-
ably give the rate of increase of the spontaneous-
emission field. This yields, for the spontaneous
emission alone,

P. =-Ap. +Ap. -|~

This i.s recognized as the Kolmogorov equation"
for the Poisson process which describes the inde-
pendent emission of noninteracting classical par-
ticles. It is seen that in the attempt to remove
stimulated emission the interference effects ex-
pected from independently emitted fields have also
been lost. Further analysis in Appendix A shows
that the generating function for this process may
be written

(8a)

which for an initial vacuum 60=1 has the form

t) e(z-1)n (8b)

We first consider the many-atom case in which
the populations of the upper and lower atomic
states are held constant by a pumping process.
Th'is is a model of a laser amplifier operating far
below threshold so that saturation effects are not
important. The time evolution of the radiation
field density matrix is determined by"

p (t) = —,[A (a pa —aa p) +B(apa —a ap)]
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which is the generating function for a Poisson dis-
tribution of mean n At. The result in Eq. (8a) is
then the product of the generating function for the
initial field and the generating function for the
Poisson distribution expected when there is no ini-
tial field. The factoring of Eq. (8a) implies that
the spontaneous emission defined by Eq. (7) does
not interfere with the initial field. . Thus, ultimate-
ly, this identification of terms cannot be accepted
because spontaneous emission so defined does not
behave as a field.

In this model, it has also been maintained that
stimulated emission, according to Eq. (6), changes
the statistics of (and adds excess correlations to)
any electromagnetic field, whether originating
from spontaneous emission alone or including the
contribution of an incident field ' That Eq. (6)
does indeed change the statistics of an arbitrary
field is shown in Appendix A by solving for the
generating function for this case,

1-fl[(z —1)/(Az —B)],"~
o 1-A[(z —1)/(Az —8)] cP {9)

where y =A Band-Go(z) is the generating function
for the initial-field statistics. Clearly, the statis-
tics of the initial field are, in general, changed by
the interaction. In fact, the relative fluctuations
(defined as the normalized second factorial mo-
ment) always increase for A g 0. (See Appendix A.)
Specifically, one sees that a field which is initially
thermal does not remain so. A geometric ('BE)
distribution. of photons has a generating function of
the form

G()=1/[1-( -1)n], (10)

in which n is-the average number of photons. Tak-
ing this form for Go in Eq. (9), one readily verifies
that G(z, t) does not remain of the form given by
Eq, (10). Similarly, one can easily show by using
Eq. (8b) in Eq. (9) that a field which is initially
Poisson, as is the case for the "spontaneous emis-
sion" defined by Eq. (7), does not become geomet-
ric as it evolves according to Eq. (9)."

The major shortcoming of th'e identification of
stimulated and spontaneous emission as given by
Eqs. (6) and (7) is that while the Poisson distribu-
tion of spontaneous photons may seem reasonable
from the standpoint of isolated atoms independent-
ly emitting photons, it is not consistent with the
wave character of the electromagnetic field, which
is well known to give rise to excess photocount
correlations as a result of the superposition of in-
dependent contributions to the fj.eld.

Before proceeding to the full solution of the den-
sity-matrix equation, we will consider an alter-
native identification of terms. ' " Within the Fok-
ker-Planck equation satisfied by P(o.), rather than

G (z, f)= 1/ [1-(z —1)A t] . (12b)

This is indeed the generating function for all times
for a geometric (BE) distribution of photons. Note
that g =A. t since there is no amplification of the
spontaneous emission. The complicated argument
in the G, factor for f & 0 in Eq. (12a) indicates that
spontaneous emissions so defined are not describ-
able merely as added independent classical par-
ticles as was the result of Eq. (7).

The stimulated emission part of Eq. (11a) has
the form

P„=(A-B)[np„—(n + 1)p„„].
The generating function for this simu$ated emis-

sion process is obtained in Appendix C with the
result

G(z, t) =Gg(z -1)e&+1]. (14)

in the number representation, terms giving rise
to coherent amplification have been identified with
stimulated emission and other terms generating
Gaussian noise with spontaneous emission. Trans-
forming back into the number representation leads
to the following regrouping of terms in Eq. (5)'

p„=PL -a)[np„—(n+1)p,]
+A[(n +1)p~, —(2n +1)p„+np„,] . (lla)

Here the terms proportional toA -B and toA. de-
scribe amplification and noise generation, re-
spectively. Because of the independence of A. and

B, this regrouping uniquely determines a regroup-
ing of the operator equation [Eq. (4)] as follows"

p = —,'(4. —B)[(atap —apat) +(adjoint)j

+ —,'A[(atpa —(2ata + l)p +apat) +(adjoint)]. (11b)
The effects of the terms in Eq. (lla) have been

explored, both separately and jointly, for fields
having valid P representations. ' In this separa-
tion, the term proportional to A -gg causes lin-
ear amplification (or attenuation) and is associated
with stimulated emission (or absorption). The
term proportional to A. is associated with spon-
taneous emission. (Note that in this separation if

A, =J3 there are no effects of stimulated emission
or absorption. )

We wish to consider whether these meanings re-
main valid for any initial field. In Appendix C, we
derive the generating functions for the field sta-
tistics as they evolve according to the bvo terms
in Eq. (lla). For the spontaneous emission part
of Eq. (lla) we obtain

(z —1) +1 —(z —1)A f
1 —(z —1}Af ' 1 —(z —1)A f

(12a)
which for an initial vacuum has the form

/
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This implies for the mth factorial moment that where

G z, t =e ~ —Goz (15) n, =A.y '(e& —1) . (18)

p = 0. '" n& 'e '"'so. d'a (18).

implies p„ is also non-negative. Thus, these stimu-
lated-emission terms may formally be considered
to act alone in these cases without leading to un-
physical results. These are also just those cases
for which the field has a classical analog.

We have seen that the separate action of the stim-
ulated-emission term in this model may not be
valid for fields which do not possess a non-nega-
tive P representation. That the derivation of this
model relied on the existence of the P representa-
tion is a possible objection to this identification of
spontaneous and stimulated emission.

To deal with this limitation, we have derived in
Appendix D the generating function for the com-
plete Eq. (5) which governs the evolution of the
full field density matrix

Hence, the normalized factorial moments, e.g. ,

(n(n —1)(n —2) (n —m + 1))
(&)m

do not change in time. The nature of the photon
statistics of an arbitrary initial field are thus un-
changed as a result of this stimulated emission.
For example, this can be seen by using Eq. (10)
or Eq. (8b) for G, in Eq. (14). This result corre
sponds. exactly to the constancy in time of the nor-
malized moments of ~ in the P(a) representation
under the action of this term. '"~

Equation (13) may lead to probabilities which
are negative or greater than one in certain cases.
If A & B and if p, ~ 0, while p„=0, then clearly p„
goes negative. This may be seen to result because
Eq. (13) is not a valid Kolmogorov equation27~M

when'. & B because A.„„&0. Thus it is nonsense, in
general, to consider having this stimulated emis-
sion exist alone. The precise limitation has been
derived in recent work" "which has shown that a
field can be arbitrarily amplified, preserving its
normalized statistics, if and only if P(o. ) is non-
negative. In real situations there is no problem,
as indicated in Eq. (lla) where stimulated and

spontaneous effects necessax'ily appear together
forming a valid equation. Consistent with results
from Refs. 31-33, we also note that if P(o.) exists
and is non-negative, then the relation

From Eq. (17) we see the well-known result that
if the initial field is the vacuum (G = 1) then the
field is BE for all time since then G(g, f) is the
generating function for a geometric distribution
for all times, with an average number of photons
given by Eq. (18).

Equation (17) completely specifies the evolution
of the photon statistics for an arbitrary initial
field. Although the various factorial moments
may be obtained from Eq. (17) by differentiation
with respect to z, an easier method for calculating
the factorial moments is described in Appendix D.
There we make use of the differential equation
satisfied by G(z, t) to obtain the differential equa-
tions satisfied by the factorial moments. In this
way we obtain, for instance, the average number
of photons as a function of time,

n(t) =n, +n,er',

where no is the average number of photons in, the
initial f.ield described by G', . Thus, the average
number of photons is equal to those in the ampli-
fied spontaneous emission (n, ) plus those in the
amplified input field (n,e~). In a similar manner,
one can easily solve for the second and higher fac-
torial moments as a function of time. "

Although we have analyzed the action of certain
stimulat'ed and spontaneous-emission source terms
separately, when both terms act simultaneously
we cannot immediately interpret the result given
by Eq (17) 26,35

In order to explore the possibility that the final
field is the superposition of several fields, we
must turn from the generating function to the quan-
tum characteristic function which is derived in Ap'-

pendix E. The characteristic function as defined
will factor in the case of superposition of indepen-
dent fields.

We obtain for the full interaction described by
Eq (4)

C(g, q) =e"'~"C,(Le~ ', pe~ '), (20)

in which n, is as defined in Eq. (18) and C,(g, q) is
the quantum characteristic function of the initial
field.

The first factor alone results if the initial field
is the vacuum (C, = 1) and therefore must represent
amplified spontaneous emission (ASE). Choosing
g= ie and q =ie* to make closer contact with the
ordinary characteristic function, we obtain

2-
C(g) —exp -n tel (21)

This is the standard form for the characteristic
function of a Gaussian random variable with mean .
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zero and variance equal to 2m, . This is consistent
with the results obtained from Eq. (17) when G, = 1,
with prior work in the I representation, ' and with
other earlier work. ""

The second factor in Eq. (20) describes the co-
herent amplification or attenuation of the input
field. given by Co. In direct correspondence to our
Eq. (15) and many similar results, '"""we see
that the normalized moments of the amplified in-
put field are unchanged since

d p/2 y gyp

e(iw) yt/y(gt)/gk) (22)

where the subscript zero in Eq. (22) means that
the expectation value is taken with respect to the
density matrix of the input field.

Thus, clearly, the final field is the superposition
of two fields which may be identified as amplified
spontaneous emission and a field resulting from
coherent stimulated amplification (or attenuation)
of the input fieM.

%e show in Appendix E that the two factors in
Eq. (20) have as their fundamental sources the
stimulated and spontaneous emission terms iden-
tified in Eq. (11b). The first factor describes the
spontaneously emitted field which has been sub-
sequently amplified. The. second factor in Eq. (20)
is derived directly from the stimulated emission-

. terms acting alone.
For the Action of the spontaneous-emissiori terms

in Eq. (11b) we have the result

(23)

Note that this characteristic function corresponds
to the generating function displayed in Eq. (12a)
since they describe the same field. Equation (23)
shows that this field i.s just the superposition of
the unchanged initial field and a spontaneously
emitted field identical with that generated in an
initial vacuum and described by

(23a)

The spontaneously emitted field is also Gaussian,
but the mean reflects linear growth in time in con-
trast to the time dependence of the mean of the
ASE described by Eq. (18).

%e have not only shown that the effects repre-
sented by the two factors in Eq. (20) are charac
teristic of spontaneous and stimulated emission,
but we have proven that these effects have as their
source the terms in Eq. (11b). Thus, we may con-
clude that the terms in Eq. (11b) represent the
action of stimulated and spontaneous emission.
These results confirm Abraham and Smith's iden-
tification of terms which was based on the Fokker-

Planck equation for P(n), but our results are more
general in that they apply to arbitrary initial fields.

. The form of Eq. (20), the product of two indepen-
dent terms describing the evolution of the ASE and
the amplified input field, indicates that we may
view these processes as simultaneous independent
stochastic processes. This was concluded by Abra-
ham and Smith under less-general conditions in the
I representation. Although the stimulated-emis-
sion terms cannot always stand alone, they are in
fact always accompanied by the spontaneous-emis-
sion terms, and the full equation always leads to
acceptable results.

%q have thus shown that the evolution of an ar-
, bitrary input field results from coherent amplifi-
cation and the addition of Gaussian noise. In par-
ticular, the amplification of initial spontaneous
emission must be coherent. Therefore, since we
have shown that the ASE is BE, it must have ori-
ginated as a BE distribution. This is the theoreti-
cal result promised earlier —the BE nature of the
ASE (and thus the correlations) have their origin
in the BE nature of the original spontaneous emis-
sion.

Further understanding of- the spontaneous emis-
sion terms in Eq. (11a) can come from the follow-
ing extension of Glauber's2~ derivation of BE sta-
tistics and the Gaussian distribution of the field
amplitude from the superposition of contributions
from a large number of independent sources. As-
«ming only that each contribution couM be repre-
sented by the same p(c ) or that all of the P repre
sentations had comyarable moments, Glauber found
that the superposition of a large number of contri-
butions could be written

Jf, rather than considering a static situation, we
take a system with a constant rate of contributions
so that

then P(n) satisfies the following differential equa-
tion

This is just the Fokker-Planck equation for diffu-
sion in two dimens-ions. ~

An even simpler arid more intuitive feeling for
. the source of the diffusion term results if each
p(o, ) ~ 0. Then p(n) is analogous to a probability
density for ~ and the evolution of P(a) is analogous
to a classical two-dimensional random walk in the
z-plane. In the limit of many small steps, such a
random walk is equivalent to diffusion in two di-
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mensions, "as described by the well-known diffu-
sion term in the Fokker-Planck equatiori. It is
this diffusion equation for p(~), or the correspond-
ing equation for p„which results when the diffusion
equation is transformed by Eq (1.6), which has been
identif ied -with spontaneous emission.

The mathematical steps of this derivation are al-
most identical with those of Abraham and Smith,
but tQe interpretation is more immediate. We see
that the spontaneous-emission terms can be under-
stood as resulting from @e addition of many inde-
pendent interfering coqtributions. The origin of
BE correlations, therefore, is just the random
superpositions and interference of fields resulting
from any chaotic source, spontaneous emission
from a large number of uncorrelated atoms being
one example.

IV. SINGLE ISOLATED ATOM

We now consider the case of a single isolated
atom interacting with a resonant mode of the field,
as described in- Sec. II. Our purpose, as discussed
in: Sec. I, 'is to compqre this case with the others
listed in Sec. I, in particular with that considered
in Sec. III, so as to emphasize the differences be-
tween the two physical models. By carrying out
exact calculations for the evolution of the photon
statistics, we will show that (i) the evolution of
the statistics is, not surprisingly, quite different
from that of the laser amplifier, and (ii) even BE
statistics are not maintained after the one-atom
interaction.

We now calculate the generating function for this
case. Following Ref. 1 we will assume that the
atom is initially in the excited state. The initial
state of the field is described by the density ma-
trix p(0). Although our derivation applies whether
or not the initial field is diagonal in the Pock re-
presentation, we will only be concerned with tPe

. diagonal elements of the density matrix.
Givgn that there are + photons present in the

field at time t, there are only two possibilities.
Either there were & —1 photons at time zero and
the atom is now in the ground state, having emitted
the additional photon, or there were + photons at
time zero and the atom is still in the excited state.
That is,

p„(t) =p„(0)Ic,,„(t)l'+p„(0)l C. „(t}l, (24)

where C~,„(t) is the (conditional) probability ampli-
tude for the atom to be in the ground state and the
field to be in the n-photon state (having started
with & —1 photons) with the initial condition C~,„(0)
= 0. Similarly, C, „(t) is the probability amplitude
for the atom to be in the upper level and the field
to be in the n-photon state {given initially there
were + photons), with the initial condition C, „(0)

=1.
The required probability amplitudes (RWA) can

be solved for exactly within the present model and
correspond to Rabi's floppit1g atom in a quantized
field. " Using the well-known probabilities that the
atom is in the upper or lower state, we obtain for
the field-density matrix,

p„(t}= p„~(0) sin'(gv+ t)+p„(0)cos'[g(n+1)~'t]. (25)

Now, using cos'+sin' =1 and the definition of the
generating function, Eq. (3), we obtain

G(z, t) = G, (z) + (z —1)(sin'[g(& + l)~'t]z")„(26)
where again the zero subscript refers. to the initial
distribution.

By taking derivatives with respect to z we obtain
the first and second factorial moments,

(+), =(&), +(sin'[g(& +1}~'t]) (27)

and

(&(~ —1)), =(n(n —1)),+2(+sin'[g(n+1)~'i]) (26)

From Eq. (27) we see that the rate of emission by
the atom is a function of the field statistics.

While Eq. (26) clearly indicates that the facto-
rial moments will be the sum of the initial value
and a time-dependent contribution due t:o the inter-
action, it is difficult to identify separate effects
of stimulated and spontaneous emission in these
equations. The effects of stimulated and sponta-
neous emission relight be associated by some with
the terms & and 1, respectively, in the factor
(&+1) ~ (or, similarly, the + —1 and 1 in ~+)
which appears in the upper and lower state ampli-
tudes of the flopping atom. Considered to lowest
order in time, however, the square root disap-
pears and Eq. (25) becomes

p„(t) =p„(0}(gt}'n+p„(0)—p„(0)(gf}2(n +1), (29)

which is just Mandel's Eq. (20).' We note that it
is of the same functional form as Eq. (5), though
with B=0 and a quadratic time dependence. We.
see that, the & and 1, identified in Ref. 1 with sti-
mulated and spontaneous emission, are derived
from the (n+1)'' factor. Such an identification
will lead to the unphysical results investigated in
Sec. III for the corresponding separation of terms.

From Eq. (26) we see that the nature of the gen-
erating function changes in general and hence that
the statistics are not conserved. In particular we
show below that BE statistics will be altered by
the full atom-field interaction, although it is cor-
rect that; to lowest order in time there is no change
in the normalized excess correlation for initially
BE statistics, as shown in Ref. 1. From Eq. (26)
or from what follows below one could prove the
stronger statement that to lowest order in time
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the interaction preserves BE statistics. This also
follows from the similarity between Eqs. (29) and

(5) and the properties of the latter equation as al-
ready discussed.

If the initial field has BE statistics, then p„(0)
is geometric, i.e.,

where

0 & P& 1

It is necessary that p,(t}/p„,(t) be a constant if
the field is to have BE statistics at time &. Using
Eqs. (25) and (30) we obtain

p, (&) p'cos'Q(n+1)~'f]+ p sinm(g&nt )
p„(t) P cos'(gVn t) + sin~ fg(n- 1) t]

The right-hand side of Eq. (31) is obviously not a
constant. Since BE statistics are not maintained
under this interaction, it is difficult to justify the
position that the interaction leads to BE statistics.

Hence, either by observing the form of the exact
generating function, Eq. (26), or by using Eqs.
(2V) and (28} to calculate the excess correlations
to any desired order in t, we verify that there are
indeed changes in the photon statistics arising
from the interaction. However, there are no seya-
rately identifiable spontaneous or stimulated emis-
sion effects.

It is important to note that this single atom is
not being maintained in the upper state. The
changing of the populations of atomic levels in re-
sponse to the ambient field naturally gives rise to
nonlinear effects.

In conclusion, we have found that, in general,
the single-atom interaction does indeed change the-
correlations of an initial field. However, it does
not conserve BE statistics and thus cannot be con-
sidered the source of BE correlations.

V. DISCUSSION

An excited atom radiating into an incident field
will be influenced by the presence of the ambient
field. The distribution of photons in the evolving
field will reflect not only the enhanced rate of emis-
sion, identified with stimulated emission, but also
the effects of interference with spontaneous emis-
sion expected from the wave character of the elec-
tromagnetic field. One might expect the latter
even if the atom were not influenced by the field. .
One could perhaps argue that it is just this inter-
ference aspect which is responsible for drawing
energy out of the atom at the stimulated rate, and .

hence that these two effects are indistinguishable.
According to this latter point of view, any changes
in evolution of the field statistics resulting from

the addition of an incident field would presumably
be explained as resulting from stimulated emis-
sion. It would appear that several previous. au-
thors' -' subscribe, at least implicitly, to this
type of reasoning since they do not separate the
effects of interference from those of stimulated
emission.

Abraham and Smith have explicitly. separated
these effects. Our alternate derivation, in Sec.
IH, of their spontaneous-emission rate equation
graphically confirms the correctness of separating
interference and stimulated effects. We are thus
led to the conclusion that by deleting what are
customarily identified as terms arising from stim-
ulated emission, one loses not only stimulated
emission, but also all interference effects. This
explains, for instance, why Webbs incorrectly con-
cluded that "stimulated emission is responsible
for photons obeying BE statistics in blackbody ra-
diation, " as was pointed out by Abraham and Smith.
This also explains why, as we showed in Sec. III,
Vorobev and Sokolovskii's attempt to separate out
stimulated effects leads to classical particle (non-
interfering, Poisson distribution) effects for the
spontaneous emission [cf. Eq. (8)].

Interference effects and the properties of random
superposition of independent increments of the field
amplitude (as characterized by the well-known re-
sults of the central-limit theorem, random walk,
and diffusion in a plane} are sufficient to explain
the results of the Hanbury Brown-Twiss experi-
ment and the presence of BE statistics in those
cases in which we have shown that the amplifica-
tion is linear and, therefore, coherent. In those
other cases in which nonlinearities are important,
such as for the single isolated atom or in a laser,
the changes in the photon statistics are such that
BE statistics are not conserved (as we showed in
Sec. IV for the former and as is well known for
the latter case).
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APPENDIX A

In this appendix, we will derive the generating
function, defined by Eq. (3), for the photon-number
probabilities (the diagonal elements of the density
matrix) which evolve according to Eqs. (6) and (7).
We obtain the partial differential equations satis-
fied by G(z, t) by multiplying each equation by z"
and summing over from zero to infinity. A term
of the form

gnp„z"
n~o
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may be seen to be equal to

d d"
z

d G(z, t) =z
d

— pg" .

Similarly, a term arises of the form

If desired, one can now obtain the quantities

p„(t) =—
t
—G(z, t)

,
z=o

We also note that the kth factorial moment

(A7)

Q(n- 1)p„,z".
n=o

(n{n, 1) ~ (n k+ 1)) = G(z t)
dz ' g=1

(AB)

Since the diagonal elements of the density matrix
are defined to be zero for n less than zero, the
above summation equals

can be found by the method of differential equations
described in Appendix D, rvith the result for the
first two factorial moments that

z'(d/dz )G .

Hence, we obtain for Eq. (6)

d d d 2 d d
dtG(z, t) =-Az

d
G-Bz

d G+Azmd G+B G,dz dz dz dz

dn/dt =yn. ,

d(n(n —1)) = 2An + 2y(n(n —1}).

(A9)

(A10)

~hich is equal to
(

(, t) =(/1 — )( — ) ( ). (Al)

Using these results, we see for the normalized
excess fluctuations 5 that

df d (n(n —1)) —n2 d (n(n —1))
dt dt n2 dt 'n2 nWe solve this partial differential equation by ob-

serving that if we can find a function 5 of z such
that

d /dy=(Az-B)( -1),
then Eq. (Al} reduces to

(A2}

(AB)

I 1
ln(Az —B) +—ln(z —1)

y- y

The solution of Eq. (A3) is an arbitrary function
of y+t. Expanding dy/dz in partial fractions and
integrating, we obtain (the constant of integration
is set to zero for convenience)

(All�)

Thus stimulated emission as identified jn Eq. (6)
increases the correlations unless A =0.

The spontaneous-emission terms from Eq. (7)
lead to the following equation for the generating
function.

—G(z, t) =-AG(z, t)+zAG(z, t)

=A (z —1)G(z, t) . (A12)

G(z t) eAt(g-r)G (z) (A13)

The solution for sponta'neous emission in this mod-
el is

y Qz

where y =A -B.
Therefore, - G is an arbitrary function of y+ t

or, what is the same thing, of

x =e&&""~= .e&'
Az -B (A4)

The form of the arbitrary function is determined
by the initial condition

G(z, 0) =G,(z). (A5)

1 —B[(z -1)/(Az- B)]e&''
' 1-A[ -1)/(A. -B)J"' (AB)

Consequently, we must find a function of the quan-
tity in Eq. (A4) which reduces to z when t is zero.
This is found by setting t =0 and solving Eq. (A4)
for z in terms of x. After a little algebra, we find
the required argument of Go, and hence

APPENDIX 8
In this Appendix, we will explore how far one

cari pursue the model suggested by Eqs. (6) and
(7). The contributions of the amplified spontane-
ous emissions originating at different times will
be added, based on Eq. (Ba), as if the numbers of
photons were classical independent random vari--
ables (which is not the case). The model for am-
plification used. here is that suggested by Vorobev
and Sokolovskii, ' given in our Eq. (6), and dis-
cussed in Appendix A. Our purpose is to see in

. what manner one might understand their assertion
(and Mandel's similar position'} that the change in
statistics brought about by Eq. (6) gives rise to
BE photon statistics, We assume for argument' s
sake that the spontaneous, emission gives rise [in
accordance with Eq. (Bb)] to a Poisson distribution
in each small time interval. For simplicity, we
assume that & =0, i.e., that there is no absorption.
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In that case, Eq. (9) for the "amplification" pro-
cess reduces to

1
'(t —((z -(l/zit"') ' (81)

im ltl exp Atzt
(

„(t)

=lim exp A. At
N~ OO k=y~p

N

~Ah Dt y

where the limits are taken such that &&t =t. Using
the definition of the Riemann integral, Eq. (84)
becomes

The generating function of the sum of independent
random variables is given by the product of their
generating functions. " i,et G~, (z, f('&&) be the gen-
erating function for those photons sp,ontaneously
emitted during a time interval &t at time &«ago,
and all photons arising from them. The integer
parameter & varies between 1 and &, where t =N&t.
Time could also be interpreted as distance along
an amplifier tube. Each G&& is of the form of equa-
tion (81).

The generating function for all photons is then
N

G(z, t) = QG (z, hat) . (82)
A=j.

According to Eq. (8b), the distribution of sponta-
neously emitted photons in &t is Poisson, with
mean A.&t. Hence we have

G (z) e~t(p y)-
Now, using the above expressions in Eq. (82), we
fi11d

liin C(z, t)

terms suggested by Abraham and Smith'. [See our
Eq. (11a).] For spontaneous emission alone (or
when A: =8), the density matrix evolves according
to

f P„=A[(n ~1)P„,, —(2n ~I )P„+nP„,] .
d

which reduces to

G(z, t) = I/[1 —(z —1)At] (C4)

for an initial vacuum state.
Turning now to the terms suggested by Abraham

and Smith as giving rise to. amplification through
stimulated emission, we consider Eq. (13)

P„=(A —&)[&p„-(~+1)p„,,].
We again multiply by z" and sum over &. Using
methods identical to those in Appendix A, we ob-
tain

We first multiply Eq. (CI) by z" and sum over &

from zero to infinity. Using techniques similar to
those used in Appendix A for terms of the form
p~" and (&+1)p„+,z", etc., 'we obtain the partial
differential equation governing the evolution of
G(z, t),

d
et ( etz)=A( zl} (z —()e e()t (z, t); (e:Pl

Equation (C2) is quite similar in form to the
equation for G which describes the evolution of
the density matrix according to the full Eq. (5).
We refer to Appendix D, where that equation for
G is solved more generally, for the details of the
solution of Eq. (C2). Alternatively, one can verify
by substitution that Eq. (C2) is satisfied by

1 (z —1) +1 —(z —' 1)At
1 —(z —1)At ' 1 —(z —1)At

dt'
e:(z, t)= exp zt

(( ((~ ( )0

xexp -A dt'

—G(z, &) =y(z —1)—G(z, t),

which has the solution

(c5)

'7he integrals are standard, and we obtain

1
1 —(z 1)(e"' 1) ' (86)

which is indeed the generating function for a geo-
metric BE distribution of photons with mean e"'
-1. Of course, this result does not justify the
model implied by Eqs. (6) and (7) because the mod-
el is based on noninterfering emissions.

APPENDIX C

G(z, t) =G,[(z —1)e~'+I]. (C6)

This result is discussed following Eq. (14). Note
that if y&0, the argument of Go does not, in gen-
eral, have absolute value less than one, as was.
required of z to ensure convergence of the sum de-
fining Go. In general, this will create problems

' reflected in the behavior of G(z, t). [See the dis-
cussion before and after Eq. (16).] Why no prob-
lem arises if there exists axnon-negative P.repre-
sentation can be understood by multiplying Eq. (16)
by z" and summing. We obtain

We now derive the generating functions that re-
sult from the stimulated and spontaneous emission G (z)= f e("~t''tp(elzpe. (c7)
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Using this in Eq. (C6) results in

G(z, t) = et"I ' s OP(a)(f a (C8)

and a change of scale in the o. plane brings us back
to the original form of Eq. (C'l) (with a different
but still non-negative P representation) which by
assumption is convergent. (Note: ~z~

~ 1, P(n) ~ 0,
and JP(a)d'o. =1.}

- APPENDIX D

e-1))(zs-&) (elntt)c-B)G)dz'

This suggests defining G(z, t) =e~"~' e)G for which
we obtain

d
dt G(z, t) = (z —1)(Az -B)„G(z,t). - (D2)

This is now the same partial differential equation
as Eq. (Al). Hence, the general solution for G is
an arbitrary function of

In this Appendix, we will derive the generating
function corresponding to the complete density
matrix which evolves in accordance with Eq. (5).
Making use of methods described in Appendixes
A and 8, we multiply Eq. (5) by z" and sum over
+, obtaining

—G(z t)=(z -1) (z)z B) G— A+—
)Gdt ' dz

=(z —))(t)z —tt)
d

Gz ~ G). (Dl)
d A

The expression in the large parentheses is equal
to

dt
—n(t) =yn(t), A,
d

(D5)

which is easily solved and yields Eq. (19).
The next order is obtained by operating twice

with d/dz on Eq. (D1) and evaluating at z =1. The
result is

dt
G"(1, t) =2yG" (1, t)+4An(t),

where

G"(1, t) =(n (n —1)), = —G (z, t)
dz

APPENDIX E

In this appendix, we solve for the quantum char-
acteristic function of the unsaturated laser ampli-
fier evolving according to Eq. (4) and for the sep-
arate effects of the stimulated and spontaneous
terms identified in Eq. (11b), using Eq. (4) or Eq.
(1lb} and the relations

e ~ae~ =a+g

is quite tedious. The factor of (z —1) in the right-
hand side of Eq. (D1), coupled with the fact that
the highest derivative with respect to z is first
order, implies that when one operates with (d/dz)
on Eq. (Dl) and then sets z =1, the highest deriva-
'tive remaining is of order ~. Thus, we may ob-
tain'differential equations, of first order in time,
for the factorial moments. The coupling in the dif-
ferential equation for the ~th factorial moment is
only to ~th and lower order factorial moments, so
we can successively solve for higher and higher
factorial moments. For instance, the first such
equation is

x=- e

This means, according to the definition of 6, that
G(z, t) is equal to (Az —B) ' times an arbitrary
function of &.

Making use of the requirement

G(z, 0) =GG(z)

determines the form of the function of x. A bit of
algebra establishes the full solution

1'(""-1-(. -1)-.

xG, (D3)
1 —Bt(z —1)/(Az B)]e)—' 1 —A[(z —1)/(Az —B}]e~ -'

e"'a~e "'=a~+@.

The partial differential equation satisfied by C(f, ))),
which is defined by Eq. (1), was derived by Can-
trell'

BC(&, q) (y () ()

Bt 2 9f Bq
+n —+Agq—C(L, q)

In accordance with the identification of terms made
by Abraham and Smith, and represented by the
separation in Eq. (11b), the y term represents
stimulated emission and the remaining term. repre-
sents spontaneous emission.

To solve Eq. (E1), we rearrange terms to give

in which

n, =Ay '(e~ —1).
Calculating the factorial moments from Eq. (D3)

BC y ~ A y ~ A—= —& —+—q + —q —+ —& Cbt 2 bg y 2 Bq y

which can be written

(E2)
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SC — 'ype ~~n/y
s

(e"~n/yC)
Gt 2 8$

so that

C(g, q, t) =e 'C, (g, q). (Ev)

+ y'qe ~cn/y (e~n/y C)/
8'g

Using a new function & defined by

Z =e~ y '(C},
Eq. (ES) becomes

BK y 8 y
2 &(in&) 2 &(inq)

(E4)

This describes a linearly growing Gaussian noise
field of mean At superposed with the initial field.

The equation for the stimulated terms alone is

+q —C

which is of the general form of Eq. (E4}so that its
solution is

Equation (E4) has the general solution C((, q, t) =C,(gey' ' qey'») (E 9)

where f is an arbitrary, differentiable function of
its arguments. This is equivalent to writing

pre y/n qe yn/n]

I

where g is another arbitrary, differentiable func-
tion. The particular function g is found by requir-
ing that C{K,q, 0) =Cn(f, q), where Cn describes the
initial field. Using the definition of & in terms of
C and the initial condition, we obtain .

I

C(&, q-, t) =expkq/i& '(e" —1)l

)( C (geyn/2 qeg/2) (E 5)

The solution for the stimulated and spontaneous
terms taken separately is simpler and proceeds
along similar lines. For spontaneous emission
acting alone, we have

8C
„-Agqc(g, q),

As follows from Eq. (22) this represents the scale
change in the field variables expected for linear
amplification. It preserves all normalized sta-
tistical quantities.

We further note that Eq. (E5} implies for an ini-
tial vacuum (C, =1) that

C(&, q, t) =exr4&q/iy '(e" —1)1, (E10)

which must represent amplified spontaneous emis-
sion. Clearly, the Gaussian statistics of sponta-
neous emission alone have been preserved. The
mean

n, =Ay '(ey' —1),
is what would be' expected from linear amplifica-
tion y and a source term A.

In conclusion, we have shown that the result of
the total interaction, Eq. (E5), is the superposition
of two independent fields which are the amplified
spontaneous emission, Eq. (E10), and the coher-
ently (linearly) amplified initial field, Eq. (E9).
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