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In nonlinear multimode optical systems, stochastic fluctuations of the intensities of the competing
modes have signatures (characteristic moments, cumulants, and cross correlations) that depend on
the number of modes and on any constraints on the total intensity. For the cases of maximum en-

tropy fluctuations within a constant total intensity and within a fluctuating total intensity, we derive
the intensity probability distribution functions and calculate the moments, cumulants, and cross
correlation. The latter two are shown to be sensitive indicators of the number of interacting modes.
When the modes are statistically equivalent, particular relations between the variance of one mode
and the cross correlation of any two modes can indicate the type of mode coupling independent of
their number. The predictions of these models are compared to recent experimental measurements
on a multimode source of amplified spontaneous emission. Statistical results for a system that ran-
domly jumps among single-mode states while maintaining constant total intensity are also calculat-
ed and are compared with the statistics of a (deterministic) two-mode bidirectional ring-laser simu-
lation. The results are widely applicable to other coupled-mode systems including multimode
lasers.

I. INTRODUCTION

Intensity fluctuations in optical systems are often
characterized by statistical quantities such as moments,
cumulants, and correlation functions. ' More recently,
with the recognition that such fluctuations may be the re-
sult of dynamical rather than stochastic processes, time
series of single-mode and total intensity fluctuations have
been used to calculate entropies and dimensions to test
for and distinguish between dynamical and stochastic ori-
gins. However, entropies and dimensions are global
averages which often have the same values for fluctuating
signals that differ in many other characteristics. One way
to distinguish among systems with similar dimensions
and entropies is to calculate generalized entropies and di-
mensions. ' Another way to specify more accurately a
fluctuating system is to measure its statistical properties
(moments, cumulants, cross correlations, multitime
correlation functions). However, in general, not all
dynamical and stochastic measures can be accurately
determined from experimental signals of limited duration
and limited precision. Since a signal is fully specified
only by a complete set of higher-order measures, the lim-
ited information from both dynamical and stochastic
measures may be necessary to infer the underlying prop-
erties or constraints of the system. In addition, it is use-
ful to measure the statistical properties of dynamically
fluctuating systems in order to discern similarities to or
deviations from the behavior of purely stochastic sys-
tems.

In this paper we show that certain statistical measures
can be used effectively in the analysis of multimode fluc-

tuating signals. For example, we calculate moments and
cumulants for three types of multimode stochastic pro-
cesses and show that they can be used to distinguish
among the constraints governing those processes. Mea-
surements of moments or cumulants of single-mode fluc-
tuations or of two-mode cross correlations can be used to
infer the total number of interacting modes if particular
constraints on the total intensity are either known or as-
sumed.

Our particular interest in multimode systems includes
amplified spontaneous emission' "' ' (where the
modes are driven by stochastic noise) and multimode
lasers (where the modes may be driven stochastically
by spontaneous emission, deterministically by coupled-
mode dynamics or by a combination of both). In a wide
variety of these systems the total output is limited by the
rate at which energy is supplied by the pumping mecha-
nism. When the modal intensities are strong and heavily
saturate the medium, it has often been reported that the
total intensity is nearly constant while the intensities of
the individual modes fluctuate more widely. This was
most recently observed for multimode dye laser data
which were analyzed for deterministic behavior. '- This
motivates studying stochastic modal intensity fluctua-
tions within the constraint of a constant total intensity.

In selecting a model for coupled-mode interactions,
one must first select between describing the modes by
their intensities or by their amplitudes. Despite the
neglect of phase fluctuations, stochastic models for cou-
pled modal intensities' ' ' '' lead to the same intensity
fluctuations as models using coupled modal field ampli-
tudes ' '' when the gain of the medium (and hence the
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total intensity) is heavily saturated. This indicates that
phase fluctuations in these cases do not couple strongly
with intensity fluctuations under heavily saturated condi-
tions. Thus the results from studies of models for cou-
pied intensities are broadly applicable and will be used in
the present analysis.

In this paper we will compare the intensity fluctuations
in four different models: in Sec. II, stochastic, maximum
entropy fluctuations of the individual modal intensities
within the constraint of a constant total intensity; in Sec.
III, stochastic, maximum entropy fluctuations of indivi-
dual modal intensities with a fluctuating total intensity;
in Sec. IV, stochastic fluctuations of individual modal in-
tensities within the constraint of a constant total intensity
and under the condition that at any one time only one
mode is on (the others are off; and in Sec. V, chaotic
(deterministic) switching in a two-mode laser in which
the total intensity is nearly constant. To distinguish the
different cases or select the appropriate model for a given
experimental system, several normalized statistics and
cross-correlation functions must be used. Measurements
of two modes simultaneously and calculation of the cross
correlation permit inferences to be drawn regarding the
fluctuations of the total intensity as well as determination
of the number of modes participating in the interaction.

Stochastic models are clearly appropriate for sources
(both cosmic and laboratory) of amplified spontaneous
emission (ASE) where no evidence for low-dimensional
deterministic chaos has been found in the random fluctua-
tions. ' Some multimode laser phenomena also seem to
be best described by stochastic models (while others are
clearly dynamical). Even for deterministic systems, sto-
chastic models can provide benchmarks, thereby facilitat-
ing a clear determination of those properties arising from
dynamics.

One application of these results would be in analyzing
the rates of multiphoton processes generated by a mul-
timode beam. Often the rates of an m-order process
exceed the predictions based on the mth moment of the
total intensity fluctuations. The excess is attributed to
the larger relative fluctuations of the constituent modal
intensities. For example, the excess above unity of nor-
malized moments for individual modes has been used to
explain excess multiphoton ionization rates and ex-
cess second (and higher) -harmonic generation efficiencies
for multimode lasers ' "' (as compared with single-
mode lasers of the same average intensity). Sometimes
the logic has been inverted and the excess rates have been
used to infer the number of independent degrees of free-
dom (quasimodes or mode clusters) in the multimode
laser operation. ' ' ' However, the connection between
number of modes and the excess rate depends on assump-
tions about the constraints on the modal fluctuations.
Though cumulants may provide high-resolution charac-
terizations of fluctuating signals, moments are the ap-
propriate measures for such calculations or inferences
when the physical phenomena rely on a particular power
of the instantaneous intensity.

In the following sections we consider the four different
models outlined above. We apply our results to the
analysis of fluctuating ASE signals as an example.

II. MAXIMUM ENTROPY FLUCTUATIONS
WITHIN A CONSTANT TOTAL INTENSITY

Systems for which the total intensity is nearly constant
include broadband and multimode amplified spontaneous
emission' (including astrophysical masers), non-
resonant feedback lasers, ' and some cases of multimode
laser action. ' In all of these cases the total intensity
is stabilized by the common interaction of the modes
with the gain of the medium and the resulting mutual
cross saturation arising from the saturation of the toal
energy extracted from the medium. Specifically for ASE
in a laser amplifier, it has been shown that for low satura-
tion (short lengths) the total intensity fluctuates, but for
high saturation (long lengths) the sum of the modal inten-
sities becomes more nearly constant. '

By renormalizing the total intensity of multimode
Gaussian radiation to have a constant value ("energy-
stabilized Gaussian radiation"), Masalov' derived the in-
tensity probability distribution function (IPDF) for the
intensity of a single mode,

p„(I, ) =(n —1)C' "(C I, )"—
where I, is the intensity of the ith mode (I, ~0, 'tii), n is
the number of modes, and C is the constant total intensi-
ty. Masalov and others have found that when the nurn-
ber of modes interacting under the constraint is large, the
distribution of each individual mode approaches a nega-
tive exponential distribution' ' ' ' ' ' (the result for
thermal light and spontaneous emission). This result in-
dicates that the degree of gain saturation cannot be in-
ferred from the fluctuations of a single mode if the total
number of modes is large. This contrasts sharply with
our intuition developed for single-mode lasers and
single-mode ASE because in those cases the normalized
variance of the fluctuations is readily reduced to zero
with increasing gain saturation.

In this section we assume a constraint on the intensities
given by

(2)

We make the further assumption that the variations in
the modal intensities have the maximum entropy distri-
bution within the constraint of Eq. (2). This will be
shown to agree with Masalov's "energy-stabilized Gauss-
ian radiation" IPDF for a single mode.

A. Derivation of intensity probability
distribution functions

The derivation of the probability distribution functions
can proceed along two apparently different paths. In
both methods the IPDF is sought which maximizes the
entropy under the constraint of Eq. (2). The first method
uses the conceptual idea that the maximum entropy dis-
tribution results when all points on the section of the
( n —1)-dimensional hyperplane defined by Eq. (2) are
equally probable.

The second method is to consider the constraint of Eq.
(2) as subdividing a line segment of length C into n parts.
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By taking partitions as equally likely, one can compute
the desired probability distributions. Partitioning the
line segment is the continuum limit of partitioning a fixed
number of boson particles into n "compartments. "'

For n modes the uniform distribution on an (n —1)-
dimensional hyperplane has the probability distribution
function

p„(I,, . . . , I„)=NB(r i + I„—C ),

lar procedure will recover Eq. (8). From the standard
derivation of pk one sees that this is the quantum
(discrete) equivalent of partitioning the interval [0,C].

B. Moments, cumulants, and cross correlations

From the general results for n modes, the following re-
sults are found:

where N is a normalization constant. Repeated integra-
tion yields the normalization constant,

(r )=—,C
n

' (10a)

N=(n —1)!C' (4)
p qq!(n —1 )!

(I, )~ (n+q —1)!
(10b)

so that

p„(I&,I2, . . . , I„)=(n —1).C' "l(I&+ +I„—C) .

By integrating this joint IPDF over (n —k) modal inten-
sities, we obtain p„(r, ,rz, . . . , Ik ), the joint distribution
for k out of n coupled variables. Geometrically this is
equivalent to projecting the hyperplane onto k dimen-
sions and calculating the fractional area of the hyper-
plane that is projected onto each point.

The general result for the k-variable joint probability
distribution of a system of n coupled variables is given by

p„(I,, . . . , Ik ) = f dI„+, f dI„p„(I„.. . , I„),
0 0

(6)

k2=—

C12

(n —1)
(n+1)

2(n —1)(n —2)
(n+2)(n+1)

—1

(n +1)
—1

(n —1)

((r, (I, ) )')—

((I, —(I, ))')
&r, )'

((I, —(I, &)'&

&I, )'
6(n —Sn +3n +7n —6)

(n +3)(n +2)(n +1)

&I,r, ) —&r, &&r, )

(I, )(r, )

(r, r, ) —(I, )(I, )

((r, (I, ))')—

(10c)

(10d)

(10e)

(10f)

(10g)

for k & n; therefore,

(n 1)! (C It Iz — ——Ik)"—
Pn( 1& ' ' '

& k) „—& (
—k —1)I

For the case k =1 and arbitrary n, we obtain Eq. (1), and
for k =2,

p„(I&,I2 ) =(n —1)(n —2)C' "(C I, I2)"— —

g (
—1)((r, (I, &)&) =q—!(n —1)!C~y

o m!(n —m+q —1)!n

(10h)
Some of these results, notably Eqs. (10c), (10f), and

(10g), have been reported earlier by others who have con-
sidered stationary solutions for n-mode systems in the
limit of heavily saturated gain. The distributions p„(I; )

are plotted for n=2, 3, 4, 8, and ac (for the arbitrary
choice of (I, ) = 10) in Fig. l.

These results may also be obtained using the second
method in which the interval [O,Cj is partitioned into n
subintervals. A still more fundamental quantum deriva-
tion starts from the expression for the probability of
finding k indistinguishable bosons in a given cell of phase
space (or mode of the field),

n+r —k —2

r —k

0.10

0.08—

0.06-

0.04-

nfinity

n+r —1

(9) 0.02-

where r is the total number of bosons and n is the number
of cells (modes). By letting r and k tend to infinity, using
Stirling's formula for those factorials involving large
quantities, changing variables to C =ra and I=ka,
where a has units of intensity, and normalizing the in-
tegral of the resulting IPDF, we recover Eq. (1). A simi-

0.00 1
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I

20 30
INTENSITY I1 (arb. units)

50

FIG. 1. Plot of the single-mode intensity probability distribu-
tion function p„(I1 ) vs I, for n =2, 3, 4, 8, and ~ for maximum
entropy fluctuations within the constraint Q, I; =C. (I& ) is ar-

bitrarily set to 10 in each case.
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The moment-generating function defined by

M„(X)= J exp(AI )P(I)dI
0

yields the moments by differentiation

A, =O

Evaluating the integral in Eq. (11) yields

(A.C )~(n —1)!
(n +q —1)!

(12)

(13)

1. 1

1.0
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C~ 0.8
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+ 0.3
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As this cannot be written in closed form, the cumulant
generating function,

Q„(A. ) =1nM„(k), (14)

cannot be evaluated directly. However, the cumulants
can be found from the moments with the usual relations
implicit in this formula. Higher accuracy in the numer-
ical calculations (by avoiding cumulative errors) is ob-
tained using the analytical expressions for the central mo-
ments [Eq. (10h)] to calculate the cumulants because they
include differences of the moments. Note that the cumu-
lants in Table I have a much more sensitive dependence
than the moments on the number of modes. This arises
from the fact that each cumulant is independent of the
values of the other cumulants, unlike the dependence, in
part, of each moment on all lower-order moments.

Normalized cumulants are compiled in Table I for
n =2—10, 15, 20, 25, 100, 500, and ~. In ac-coupled
measurements it is often difficult to determine (I, ), so
the cumulants normalized to k2, defined to be k' and
given in Table I, are of considerable practical value.
Comparisons of measured statistical fluctuations in ex-
perimental systems with Eqs. (10) and Table I may aid in
identifying the number of interacting modes or in
confirming whether the model is applicable.

As an example of the usefulness of these results, we
consider recent experimental measurements of one polar-
ized component of the output of an ASE source '

summarized in Fig. 2. For discharge lengths above 160
cm, the values of the variance ( =To~) and higher-order
cumulants (KO3 and E04) remained nearly constant [see
Fig. 2(a)] while the cross correlation of orthogonally po-
larized copropagating beams cIz [see Fig. 2(b)] continued
to decrease, reaching a value of —0.145+0.002 at the
longest length measured. (For clarity we use Ko, as in
the notation of Ref. 30, as the experimentally determined
values of k in arbitrary units. ) The values of k3 and k4
for the longest lengths are 1.79+0.08 and 4.9+0.3, re-
spectively. Using Eqs. (10c)—(10e) and the values of k3
and k4 as if they were asymptotic values, we find the es-
timated number of modes to be 27.8 and 41, respectively,
with the range of n (k 3 ) being [19.5,46.9] and the range of
n ( k ~ ) being [30,61]. However, other measure-
ments "' " ', for more heavily saturated ASE signals
give values for k 3 and k4 consistent with the number of
modes being in the range 7—12. Using Eq. (10g) as if
c',2= —0. 145+0.002 were an asymptotic limit suggests
eight (7.92+0.07) modes interacting in the inhomogene-
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FIG. 2. (a) The cumulants Kp2 Kp3, and Kp4 (in arbitrary
units) of the intensity of a single polarization component of the
output fro~ the ASE source in Ref. 30 plotted vs discharge
length. The partial pressure of Xe was 182 mTorr and the par-
tial pressure of He was 1.9 Torr. (b) The cross correlation c'„
(normalized to the square root of the product of the variances of
the two signals) of orthogonally polarized copropagating beams
from the source in (a). (c) The quantity Kp&(1 2c l, ) vs
discharge length. (d) The calculated number of modes using the
cumulants in (a), renormalized by dividing by 0.41+0.02 and
substituted into Eqs. (10c)—(10e), and the cross correlation in (b)
substituted into Eq. (10g) vs discharge length. The uncertainties
for n(k2) range from 10—16%. The uncertainties for n(k, ),
n(k4), and n(c» ) are the size of the data point or smaller. The
dashed lines serve as a guide to the eye.
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TABLE I. Normalized cumulants k'{:—k /k~ ) and cross correlation c i2 for the distributions given
by Eq. (1).

2
3
4
5

6
7
8

9
10
15
20
25
100
500

k3

0.0000
0.5657
0.8607
1.0498
1.1832
1.2830
1.3607
1.4230
1.4741
1.6350
1.7203
1.7733
1.9409
1.9880
2.0000

k4

—1.2000
—0.6000

0.0952
0.6964
1.2000
1.6222
1.9792
2.2841
2.5470
3.4538
3.9854
4.3340
5.5374
5.9047
6.0000

k',

0.0000
—2.4244
—2.4590
—1.6622
—0.5679

0.6065
1.7671
2.8733
3.9092
8.0398

10.8495
12.8431
20.6337
23.2897
24.0000

k6

6.8571
—0.3429
—6.4198
—9.1454
—9.4036
—8.0636
—5.7385
—2.8338

0.3871
17.0161
31.1344
42.3191
94.0725

114.3620
120.0000

k',

0.0000
20.3647

3.8252
—17.2379
—33.6119
—43.4984
—47.3886
—46.3654
—41.5339

12.3271
79.2821

141.4732
503.2345
671.1297
720.0000

C12

—1.0000
—0.5000
—0.3333
—0.2500
—0.2000
—0.1667
—0.1429
—0.1250
—0.1111
—0.0714
—0.0526
—0.0417
—0.0101
—0.0020

0.0000

C. Limit of a large number of modes (n)

Taking the limit n ~ ~ in Eq. (1) and using the rela-
tion & I, &

=C In, we have after substituting for C,

1 . n —1 I,p„(I, )= lim 1—
&I, &.-- n n&I, &

1
, exp( —I, /& I, & ),I, g

tl 2

which is the negative exponential intensity probability
distribution function characteristic of the Gaussian am-
plitude statistics of spontaneous emission and thermal
light. This is the well-known maximum entropy result
for a positive random variable with a given mean. This
result can also be seen in the limits of Eqs. (10b)—(10e).
The correlation functions vanish in the limit of n ~ ~,
giving the same result as for n uncoupled negative ex-
ponential distributions. Thus the "thermal" or "spon-
taneous-emission" negative exponential probability distri-
bution applies equally well to a mode with heavily sa-
turated gain interacting (via the gain) with a large num-
ber of other modes.

ously broadened ASE source. The contradictory results
for the data in Ref. 30 suggest that the constant total in-
tensity model is not appropriate for this length, perhaps
because the gain medium is not yet fully saturated (as is
suggested by the continued decrease in c &z and KO4 with
increasing length of the ASE source). Noninteger num-
bers of modes (and values larger than 4—two directions,
two polarizations) may be explained for ASE as resulting
from an inhomogeneously broadened medium in which
there is incomplete cross-spectral coupling leading to a
poor spectral definition of modes, or by off-axis
waveguided modes. We return to ASE data in Sec. III,
where we consider the case of a fluctuating total intensi-
ty.

III. MAXIMUM ENTROPY FLUCTUATIONS
WITH A FLUCTUATING TOTAL INTENSITY

The Langevin equations for the modal amplitudes of a
two-mode laser perturbed by noise can be solved by
Fokker-Planck equations, with the result that the intensi-
ty and phase fluctuations are decoupled. The steady-state
intensities for the two modes have the joint probability
distribution function '

(I, +I2 —3 )
p(I„I2) ~ exp

n q!(n —1)! &C~&

&I, && (n+q —1)! & C&&
(17)

2n & C'&
(n+1) &C&2

2
n —1 2n oc+n+1 (n+1) &C&

(18a)

(18b)

and

where the intensities are normalized to dimensionless
units. This is equivalent to the condition I, +I2=C,
where C satisfies a Gaussian distribution with a mean
value of 3 and a normalized variance of A . In the
limit 3 &&1 the result approaches the 6-function distri-
bution 5(I, +I2 —A ).

If a multimode laser or a multimode ASE source is not
highly saturated, then C is not a constant and varies ac-
cording to a distribution function [such as represented in
Eq. (16)]. With the further assumption that the Auctua-
tions in C occur at a much slower rate than those of the
modal intensities, the results for constant C can be gen-
eralized by simply averaging over C. The effect on a few
of the statistics is as follows:
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(C')
C]z —1

(n +1) (C) (19a)

1 n ~c
n +1 (n +1) (C)z (19b)

where o&=(C ) —(C) . The result in (19b) is 0 if
o c = ( C ) /n, which is the condition for the gamma dis-
tribution. (The gamma distribution results for the sum of
n-independent negative exponential random variables,
i.e., the case of completely thermal, randomly phased,
noninteracting modes. )

Surprisingly, combining the expressions for kz and c]z
to eliminate ( C ) /( C ) yields a result independent of n

From Eqs. (18b) and (19b), we find that

k~ —1+2c,~ (20a)

or

kz(1 —2c„)=1 . (20b)

Though it may appear that this relation depends on the
strong coupling of the modes or on the assumption that
the system evolves on two time scales [a rapid rate of
modal Auctuations within a particular value of C and a
(relatively) slow rate for fiuctuations of C itself] it results,
instead, from another assumption, which is outlined in
the next paragraph. First, however, it is worth noting
that Eqs. (20) are also valid for independent thermally
fiuctuating modes. In addition, they can be derived ' (for
any degree of saturation or number of modes) using a set
of intensity rate equations of the form

dI,

dz n

1++ Ii,
I&=]

(21)

where (i) each mode begins with an independent negative
exponential (thermal) distribution and (ii) the modes are
treated as having equal gains and equal cross-saturation
effects.

A quite general result for any number of equally distri-
buted modes (regardless of the specifics of their coupling)
is, in our notation,

IV. MAXIMUM ENTROPY MODE-HOPPING MQDEI.

One might also consider that under certain conditions
all values of [I, ] satisfying the constraint [Eq. (2)] may
not be equally likely. If, as is true for the two-mode
laser, ' ' the preferred condition is for all modes to
have zero intensity except for one mode, then the single-
mode IPDF is

n —1 1p(I, ) = 5(I, )+ —6(I i
—C),

n
'

n

and the moment generating function is given by

(23)

M(k) = n —1 1+ —exp(RC)
n n

(24)

violating Eq. (22) indicates that the multivariable ampli-
tude distribution is not radially symmetric (or,
equivalently, that all points on a plane of constant total
intensity in the variable space of modal intensities are not
equally probable). (An example of the latter is given in
Sec. IV. )

As shown in Fig. 2(c), the values of Koz and c', z in the
ASE data referred to earlier obey an equation similar to
Eq. (20b), Koz(1 —2c iz ) =0.41+0.02, over all the
discharge lengths for which results were obtained. Since
at su%ciently short lengths c&z=o and k&=1, we have
that kz(1 —2c'iz)=1. If we assume that our system is
composed of statistically equivalent modes satisfying Eqs.
(20) and thus that the variance, when normalized to the
actual mean intensity squared, is kz =Koz/(0. 41+0.02)
[in which case kz(1 —2c'» ) =1 for all discharge lengths],
then we can calculate k3 =K03/(0. 41+0.02)' and
k4 =K04/(0. 41+0.02) and use Eqs. (10d) and (10e) to
determine the number of modes for the maximum entro-
py, constant total intensity model. The results, shown in
Fig. 2(d), suggest that, if the uncertainties in the original
cumulants were larger, then this may be a correct as-
sumption because the different normalized cumulants and
c']z appear to be approaching values consistent with the
same number of modes (given approximately by n =7—9).
That these numbers differ from the results using k3 and
k4, however, indicates that the model is not fully applic-
able.

0
n

z
= kz+(n —1)ciz,

C
(22) This distribution has the following characteristics:

which is satisfied by Eqs. (18) and (19). The special result
of Eq. (20) [satisfied by the maximum entropy cases of
constant C and fluctuating C, and by all solutions of Eq.
(21), as described above] appears to result from the radial
symmetry of the multivariable probability distribution in
the space of the complex modal amplitudes. This radial
symmetry in the "amplitude variable space" is equivalent
to the uniform probability density on planes of constant
total intensity in the variable space of modal intensities.
When this radial symmetry exists there is a more general
equivalence of the fiuctuations of any (normalized) linear
combination of modes.

Violation of Eq. (22) indicates that the modes are not
statistically equivalent. Violation of Eq. (20) without

&I )=—,C

(I', )
q

—1

&I, )&

k, =n —1,
k3 =n~ —3n+2,

k4 =n —7n +12n —6,
C12= 1

c', z
= —1/(n —1),

(25a)

(25c)

(25d)

(25e)

(25fl

(25g)
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TABLE II. Normalized cumulants k'(:—k /k& ) and the cross correlation c&2 for the mode-
hopping model.

2
3
4
5
6
7
8
9

10
15
20
25

k',

0.0000
0.7071
1.1547
1.5000
1.7889
2.0412
2.2678
2.4749
2.6667
3.4744
4.1295
4.6949

k4

—2.0000
—1.5000
—0.6667

0.2500
1.2000
2.1667
3.1429
4.1250
5.1111

10.0714
15.0526
20.0417

k',

0.0000
—5.3033
—7.6980
—8.6250
—8.5865
—7.8248
—6.4794
—4.6404
—2.3704

14.1458
37.3827
65.9236

16.0000
5.2500

—11.5556
—28.4375
—44. 1600
—58.3056
—70.6939
—81.2344
—89.8765

—103.8520
—68.3657

16.9184

k7

0.0000
77.9585
79.0328
36.0938

—36.0633
—129.2219
—238.0713
—358.8180
—488.5597

—1202.1233
—1899.3335
—2461.6610

C12

—1.0000
—0.5000
—0.3333
—0.2500
—0.2000
—0.1667
—0.1429
—0.1250
—0.1111
—0.0714
—0.0526
—0.0417

((r, (r, ) )q)—
'q

+c yn , m!(q —m)!

X( —1)-+q --~-'

k~c', ~
= —1, k2(1 —2c', ~)=n +I .

(25h)

(25i)

shown by the plot of I, versus I2 in Fig. 3(b)]. The prob-
ability distribution in Fig. 3(c) shows two sharp peaks, as
given in Eq. (23). Note that the intensities are not period-
ic "square" waves. The variable duration of the "on"

u) 3Q
C

2.5—
(5

Note that Eqs. (25c) and (25f) satisfy Eq. (22), but Eq.
(25i) indicates a violation of Eq. (20) resulting from the
breaking of the "radial symmetry" in this case.

Some of these characteristics are similar to those for
the maximum entropy, equal probabilities case. In Eq.
(25g) we see that there are the same relative anticorrelat-
ed fluctuations in the modes for this constraint as are
found in Eq. (10g), where they are normalized to
o —= (I, ) —(I, ) . We also see in Eq. (25c) that "super-
thermal" (o ) (I; ) ) fluctuations result for n )2. It is
clear that one must calculate several different characteris-
tics of the fluctuations to unambiguously identify the un-
derlying distribution and the physical process. Again,
cumulants and cross correlations give the sharpest dis-
tinctions between models and provide better discrimina-
tion of the number of modes than do moments and cen-
tral moments. The normalized cumulants of the distribu-
tion given by Eq. (23) are shown in Table II.

V. DYNAMICALLY COUPLED SWITCHING
OF TWO MODES

Q
I

CU

1 . 5
I

1.0-

z o5-
LU

z o.o '

.= 2.5

~ 2.O

- 1.5
I—

mz 10
UJ

z Q. 5

0.0
0.0

TIME (arb. u

I

I

I y

I I

nits)

I I I I

0.5 1.0 1.5 2.0
INTENSITY I& (arb. units)

I

2.5

(b)

3.0

(c)

Examples of dynamically coupled modes have recently
been studied by Raymer and co-workers ' and Atman-
spacher, and Baev and co-workers, among others. For
comparison with the stochastic cases discussed above, we
show an example of two coupled modes of a bidirectional
ring laser. Figure 3 shows the time-dependent behavior
for this deterministic system (for the detuning parameter
b, =0.1). It approximately fulfills the "mode-hopping"
conditions of Eqs. (23) and (25f) [as shown in Fig. 3(a),
the switching time is much less than the dwell time] and
the constraint of a nearly constant total intensity [as

0.2-

0. 1—

I I 1

50 100 150 200 250 300
INTENSITY I& (arb. units)

FIG. 3. (a) Intensity vs time for two modes in a dynamical bi-
directional ring-laser model (Ref. 43). (b) Plot of Il vs Ip for the
data in (a). (c) Probability histogram of intensity values P(Il )

for 300 equally spaced intervals.
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TABLE III. Normalized cumulants k~ (normalized to (I )') and the cross correlation c» for the n =2 case of the mode-hopping
model [cf. Eqs. (25)) and for numerical solutions for both modes of a two-mode bidirectional ring laser (Ref. 43) (6 is a detuning pa-
rameter). The larger detuning cases have more intensity modulation in the "on" mode (cf. Ref. 43) than the 6=0. 1 case shown in
Fig. 3.

11 =2

Mode 1

6=0. 1

5=0.2
6 =0.4

Mode 2
5=0. 1

6 =0.2
6=0.4

1.000

0.843+0.007
0.870+0.002
0.78 +0.01

0.983+0.007
0.845+0.002
0.83 +0.01

0.000

—O.OS9+0.OOS

0.013+0.002
0.12 +0.02

0.074+0.008
—0,009+0.001

0.20 +0.01

k4

—2.00

—1.38 +0.02
—1.440+0.006
—0.95 +0.02

—1.88 +0.03
—1.361+0.005
—0.10 +0.03

k5

0.00

0.39+0.03
—0.08+0.01
—0.47+0.08

—0.57+0.06
0.07+0.01

—0.86+0.07

16.0

9.1 +0.2
9.73+0.06
S.2 +0. 1

14.4 +0.3
8.94+0.05
5.4 +0.3

0.0

—5.6+0.4
1.2+0.2
5+1

9+I
—0.9+0. 1

10+1

C12

—1.(X)00

—0.9104+0.0002
—0.8561+0.0002
—0.746 +0.003

—0.9104+0.0002
—0.8561+0.0002
—0.746 +0.003

and "off" times for each mode are evident in Fig. 3(a). In
this case the dynamical switching appears much like the
stochastic switching within the mode-hopping constraint.
One may view this as evidence that, in this case, the
dynamical contraction of phase space is similar to the
stochastic mode-hopping constraint.

The deterministic intensity fluctuations shown in Fig. 3
have similar statistics to those of Eq. (23). Shown in
Table III are the normalized cumulants k„ through order
7 and the cross correlation c &2 for the n =2 case of the
mode-hopping model and for single-mode intensity fluc-
tuations in the bidirectional-ring-laser simulation for
b, =0.1, 0.2, and 0.4 [as the detuning parameter is in-
creased from 0.1, the intensity fluctuations increasingly
deviate from the "on" and "off" character shown in Fig.
3(a) and from the constraint I

&
+I2 =C]. Using the

statistics of the mode-hopping model as benchmarks, it is
clear that as 6 is decreased, the dynamical ring-laser sys-
tem behaves more like the stochastic mode-hopping sys-
tem. At the same time, the higher-order curnulants k6
and k7, being measures of more subtle differences, distin-
guish the ring-laser intensity fluctuations from those of
the stochastic mode-hopping model.

VI. INDEPENDENT GAUSSIAN MODES

For purposes of comparison, we also present the gen-
eral results when the total intensity is given by the sum of
n randomly phased independent modes all having Gauss-
ian amplitude statistics (negative exponential intensity
statistics) with the same mean. In this case each indivi-
dual mode's distribution has normalized qth-order mo-
ments (normalized to (I, )~) given by q! and similarly
normalized qth-order cumulants given by (q —1)!. The
total intensity fluctuates with cumulants given to all or-
ders by the sum of the cumulants of the contributing
modes. The result is that the normalized qth-order cu-
mulants of the total intensity are (q —I)!/nq ' and the
IPDF for the total intensity is a gamma distribution.
When n is large, the fluctuations in the total intensity will
be small as in the case of coupled modes. However, for
all n, there will be no modal cross correlations and no de-
viations of individual mode fluctuations from those satis-
fying a negative exponential distribution.

VII. CORRELATION FUNCTIONS

Kovalenko' has derived expressions for the correla-
tion functions for coupled modes. Assuming that systems
such as ours have diffusive motion with two diffusion
rates, one for motion on the hyperplane of fixed C and
the other for variation of C, then it is natural to write an
expression of the same form as Kovalenko's for the time
dependence of any second-order correlation function f(r)

f(r) =~ ~(0)exp( —D
~ lrl )+~~(0)exp( —D~ lrl ) . (26)

In this equation h, (0) is the result of Eqs. (10), h2(0) is
the correction from Sec. III (additional terms dependent
on C) for the same moment or cumulant, and D& and D2
are the two diffusion constants mentioned above. We be-
lieve that Kovalenko's correlation functions erroneous1y
include a factor of —,'. Otherwise, his correlation func-
tions for &=0 agree with the moments and cumulants de-
rived here and by others.

VIII. DISCUSSION

Another application of these results would be cornpar-
ison with the statistics for coupled-mode lasers. Reports
of normalized variances of the fluctuations of individual
modes reaching values larger than unity ("super-
thermal" ) are not consistent with the assumptions of
maximum entropy fluctuations and constant total intensi-
ty. However, they are consistent with the mode-hopping
model (for n ) 2) and for some distributions for fluctuat-
ing C. It also may be that superthermal results occur if
the modal intensities are taken to have different mean
values (i.e., diff'erent modal parameters) without having to
relax the constraint of constant total intensity or max-
imum entropy within the constraints of fixed mean values
and fixed total intensity. Alternatively, superthermal
fluctuations may be intrinsically related to the chaotic
(determimstic) evolution of the multimode system. Care-
ful analysis of each of these may explain the observed
superthermal fluctuations and would be instructive.
Work on extending the present models to incorporate
these effects is presently underway.

Besides the application of these results to different op-
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tical (and non-optical) systems obeying constraints of the
form g, I, =. .C, this research can be extended by consider-
ing the case of modes with unequal weighting (i.e.,
different mean values, as mentioned in the preceding
paragraph). This is the case of different gain or loss
coefficients for each mode (as in the differences in gain
available to laser modes with different frequency detun-
ings from the peak of the gain profile or as in different
portions of the ASE spectrum interacting with different
groups of atoms within an inhomogeneous gain profile).
Another alternative is to consider the effect of unequal
cross-saturation coefficients, such as typically appears for
modes with different detunings from the atomic reso-
nance. This is even more dramatic in an inhomogeneous-
ly broadened medium when the homogeneous linewidth
is sufficiently less than the inhomogeneous linewidth that
the interaction between the modes is limited to those that
couple to the same homogeneously broadened groups of
atoms.

In conclusion, statistics for fluctuations in a saturated
multimode system can be calculated from relatively sim-

pie assumptions. For each model of the modal interac-
tions, unique characteristics are derived that depend only
on the number of interacting modes. However, the num-
ber of interacting modes cannot be determined from the
measurement of a single normalized moment without an
a priori assumption about which model governs the mode
couplings. It is best to measure cross correlations be-
tween the modes and a variety of cumulants. From these
it may be possible to determine the number of modes, the
nature of their interactions, and the symmetries of the
multivariable probability distribution. Characterization
of fluctuating signals by their cumulants and cross corre-
lations can now be more effectively used to complement
the calculation of dimensions and entropies.
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