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We derive a relativistic mass tensor (dyadic or matrix) whose origin and properties have a direct
geometric interpretation in terms of projection operators related to the particle’s world line and
local inertial frame in Minkowski space, yet whose eigenvalues are simply the longitudinal (m,)
and the transverse (m,) mass. Writing the noncovariant equations of motion (EOM) for a point
particle in terms of this mass tensor bridges the gap between the compact but sterile form of the
Lorentz covariant EOM and the usual (“unwieldy”) noncovariant EOM in which m; and m,
appear. General expressions for 3- and 4-space mass (inverse mass) tensors are presented in terms

of the system Lagrangian (Hamiltonian).

L. INTRODUCTION

A well-known result of the special theory of relativity is
that in the relativistic motion of a point particle the force
and acceleration are generally noncollinear.'~> The relativ-
istic (but not explicitly covariant) equations of motion
(EOM) of a point particle with rest mass m, in an inertial
frame traveling with velocity — v relative to the rest frame
of the particle can be written as,

dp
F=— ’ ( 1 )
dt
where p = myyv,

y =1/ =0/,
and m is the particle rest mass.

Having written the EOM in a specific inertial frame of
reference, the noncollinearity of F and a is often expressed
as a manifestation of unequal transverse and longitudinal
mass parameters m, and m;,, respectively. Expansion of the
derivative on the right-hand side of Eq. (1) yields, for the
ith component, “the unwieldy expression,”"

Fi=py'm (fs—’—+‘—b—c—ix—’ cz)dzxj :
Y2 dt dt dr?
where we follow the Einstein convention of summing over
repeated indices; i, j = 1,2,3 (Greek letters take the values
1-4, Latin letters range over 1-3).
When the force is parallel to the velocity Eq. (2) reduces

(2)
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to
dx,
Fi= m "
v dr?

d’x,
=m, —=, 3
m, a2 (3)

and when the force is perpendicular to the velocity it re-
duces to

d*x;

de?’

2
d“x; ‘ 4
dr?

Equation (2) implies that, in general, the particle accelera-
tion is always parallel to the force only in the rest frame
(local inertial frame) of the particle.

The concepts of longitudinal (m;) and transverse (m, )
relativistic mass have experienced varying levels of popu-
larity? depending on whether (1) the unity and compact-
ness of the covariant EOM, or (2) insight into the details of
the motion in a specific inertial frame, were felt to be more
important. Recently, detailed analyses of the 3-space rela-
tion between force and acceleration, specifically the angle
between F and a as a function of the angle between F and v,°
and the interpretation of a “paradoxical” negative accel-
eration (velocity components orthogonal to the force may

F.=ym

i

=mt
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diminish in magnitude)”® have been reported. As shown in
the references, it is not necessary to refer to a relativistic
mass to discuss the latter effects. Our derivation of a rela-
tivistic mass tensor will provide another perspective on
these phenomena.

We present an alternative way to express the noncovar-
iant (by this we mean “not explicitly covariant”) EOM
which shows the physical results ascribable to m; and m, in
a more general formalism, yet retains much of the com-
pactness characteristic of the covariant EOM. Moreover,
our expression for the mass tensor (dyadic or matrix) ad-
mits of an intuitive geometrical interpretation in terms of
projection operators in three- and four-dimensional space-
time. The 3-space mass tensor derived below can be inter-
preted as y times the spatial components of a 4-space mass
tensor. The latter is shown to be m times the projection
operator which projects onto the 3-space perpendicular to
the particle world line. Further decomposition of the mass
tensor into projection operators parallel and perpendicular
to the particle 3-velocity yields the usual definitions of lon-
gitudinal and transverse mass. The 3- and 4-space projec-
tion operators are shown to arise as a natural consequence
of the constant length of the particle 4 velocity. The rela-
tions among kinematic constraints, their associated projec-
tion operators, and generalized mass tensors is a central
theme of the paper. The kinematic origin, formulas, and
properties of relativistic mass and motion are elucidated by
the analysis. This new perspective complements the usual
presentation.

The plan of the paper is the following. In Sec. II we
review the constraints on relativistic particle motion result-
ing from the constancy of the particle 4 velocity. Section III
presents the properties of the associated projection opera-
tor in Minkowski space. In Sec. IV we derive a suggestive
form of the particle equations of motion, identify the 3-
space mass tensors, and make the connection between the
mass tensors and 3- and 4-space projection operators. In
Sec. V we formulate a general method for deriving mass
tensors and projection operators in the Lagrangian and
Hamiltonian formulations of quite general dynamical sys-
tems. We then apply this general approach in Sec. VI to
derive the covariant equations of motion in terms of mass
and inverse mass tensors and projection operators, demon-
strating explicitly that the 3-space mass tensor is directly
related to the spatial components of a 4-space projection
operator. In Appendices A and B we apply our method to
classical rigid body rotation and to relativistic particle mo-
tion, respectively. The standard results are seen to follow
naturally from considerations of projectors and the mass
tensors. In Sec. VII we discuss and summarize our results.

II. CONSTRAINTS ON PARTICLE MOTION

Consider a nonrelativistic point mass connected to a
weightless rigid rod of length » whose other end is attached
to the origin. The motion of the mass is then constrained to
the surface of the unit sphere about the origin. If r repre-
sents the present position of the particle, then an incre-
mental change must satisfy the requirement that 8r be per-
pendicular tor, i.e., r - 8r = 0. It is shown in Appendix A
that the effective mass for this case can be written in terms
of the projection operator onto the plane perpendicular to
r.

This analogy helps motivate the following analysis. The
four velocity of a point particle satisfies the following (con-
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straint) equation,'”
ut wt = —c?, (5)

where weusethe ( + + + — ) conventjon fo; the metric
tensor (redlized using an imaginary fourth component of
tensors, where convenient). The particle four momentum
is

p” = mu’u, (6)
Combining Eqgs. (5) and (6) yields
Pt = —m?c. @)

Note that this is a constant in time as well as under Lorentz
transformations. Differentiating Eq. (5),

u* dut =0, (8)
shows that any change in the four velocity must be orthog-
onal to #*. Since the four velocity is tangent to the particle
world line, any change in particle motion is also orthogonal
to the world line. In other words, the only acceptable trans-
formation of the constant length four-velocity vector is a
rotation in 4 space.

The (covariant) Minkowski force is defined through the
equation,

K" =dp*/dr, 9)

where 7 is the proper time (i.¢., local time  measured in the
rest frame of the particle). Differentiating Eq. (7) with
respect to 7 for constant rest mass and using Eqgs. (6) and
(9), we also obtain the well known results,

K*pt=0, (10)
and
K#ut =0, (1n

Hence, the Minkowski force also lies entirely in the 3-space
orthogonal to the world line.

III. PROJECTION OPERATORS

Equation (8) implies that du* lies in the 3-plane perpen-
dicular to the world line. Hence, we require the particle
motion be such that »* is an eigenvector of the projection
operator onto the 3-plane perpendicular to u*. Note that in
the particle rest frame (local inertial frame) u* is parallel to
the time axis: Therefore, this projection operator also pro-
jects onto the local three-dimensional space of the particle.
Although the projection is onto the local 3-plane it general-
ly will be expressed in terms of coordinates of an arbitrary
inertial frame of reference. Hence, it may have a nonzero
fourth (timelike) component. In the space of 4 vectors the
projection operator onto the 3-plane perpendicular to an
arbitrary 4 vector w* can be written,

PEe = — wtw/ (wnw®). . (12)

Repeatedvapplication on any vector by a projector P has no
further effect, i.e.,

P?*=P (13)

It is clear that projection onto a lower dimensional sub-
$pace cannot possess an inverse. Taking the determinant of
Eq. (13) shows that det(P) must equal either one or zero.
The nonexistence of an inverse implies that zero is the cor-
rect answer.

Because the determinant of an operator (or matrix)
equals the product of its eigenvalues, it follows that at least
one of the eigenvalues of P equals zero. For any vector 4
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lying completely in the projected subspace we have,
PA4=A. (14)

Hence A is an eigenvector of P with eigenvalue 1, and Pisa
unit operator when operating on vectors in the projected
subspace. It follows that the projection operator can be
written (in matrix form) as,

1 000
01 0 0

P‘0010’ (13)
0 0 0 O

when written in an inertial frame in which W# (timelike)
points along the fourth coordinate axis. The Lorentz Invar-
iant eigenvalues of P are 1,1,1,0, and its trace is equal to
three, the dimensionality of the projected subspace. Now,
consider an inertial frame in which a point particle travels
with velocity v paraliel to the x axis. The projector onto the
3-plane perpendicular to the world line (the local frame),
¢an be obtained by using u* in Eq. (12). After simplifica-
tion, we have,

¥ 0 0 iyYw/c
0 1 0 0
P=l o 01 0 (1)
ivv/e 0 0 —9y/c

In this expression we have used Eq. (12), substituting « for
W, and imaginary fourth components, for convenience.
Clearly Eq. (16) reduces to Eq. (15) when v goes to zero.

Although the spatial diagonal eleiments have the same
ratio as m, and m,, our discussion implies that the nonzero
(invariant) eigenvalues are all equal to 1, as might be ex-
pected for the ratios of mass parameters in the local inertial
frame.

Iv. THE NONCOVARIANT EQUATIONS OF
MOTION

Using the expression for p following Eq. (1) and the
well-known relation for the particle energy,

E=mc%y, . (17)
we find [cf.,, Eq. (6)],
v =pc*/E. (18)

Taking the derivative of Eq. (18) with respect to time we
obtain,

dv _dp & pc’ dE

S RS 19
dt dt E E? dt (19)
Now use the relation
d—E- =F-v, (20)
dt
Eq. (18) and Eq. (1) to transform Eq. (19) into,>®
dv ¢y v
—=F——(F-v). 21
= 7 F ( ) (21)

We can rewrite this in tensor, matrix, or dyadic form, de-
pending on which is more convenient or instructive. For
the moment, we write it in dyadic form as,®

% =c/EF( — vv/c?), (22)
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where I is the unit dyadic in 3 space (i.e., 6% i,j = 1,2,3).
Equation (22) shows that there are two components of
acceleration, the part proportional to F-I=F is in the
direction of the force. The part proportionalto — (F+v)v
is antiparallel (parallel) to the velocity when the force
makes an acute (obtuse) angle with the velocity. In other
words, if the force is tending to speed the particle up then
the orthogonal components of velocity must shrink to ac-
commodate the rotation of u* (and vice versa). This is the
physical (kinematic) origin of the “paradoxical” negative
acceleration and is discussed further in Appendix B.

The form of Eq. (22) suggests defining® an inverse mass
dyadic

M= (¢¥/E)(I — wvv/c?), (23)
or, using Eq. (17) for E,
M~ = 1/(my)(d — w/c?).
After a little algebra, this can be put in the form
M~!'=[P,/m, +P,/m,],
where
P, = [I— wv/v?]
is the projector onto the 2-space orthogonal to v and
P, = vv/v?

is the (3-space complement) projector onto the 1-space
parallel to v. Equation (23a) shows that m, and m, remain
meaningful mass parameters even for quite general angles
between the force and particle velocity.

Equation (22) can now be written in the suggestive form

AN RVES (24)

dt
Note that the inverse mass dyadic [Eq. (23)] is reminis-
cent of the form of a projection operator. In fact, in the
limit as v approaches ¢ it becomes the projection operator
onto the 2-plane perpendicular to the particle velocity.
This allows only rotations of v, and thereby insures that v
does not exceed c¢. Because v is less than ¢ the diagonal
elements in Eq. (23) are strictly positive (although ap-
proaching O as v approachies ¢).

To find the mass dyadic itself we can either take the
inverse of Eq. (23), directly (it’s not really a projection
operator for v < ¢ so the inverse exists) or rewrite Eq. (2) in
dyadic form. Either method leads in a straightforward
manner to

M = my (I + Y?wv/c?), (25)
or, with a little algebra,

M= (m,P, + m,P,). (25a)
[ Using the orthogonality of P, and P, and the fact that P,
+ P, =1 it is cleaf that Eq. (25a) is the inverse of Eq.
(23a).]

Hence, Eq. (2) can be written in vector and dyadic nota-
tion as

(23a)

F=M-a. (26)
One easily verifies that Eqgs. (23) and (25) satisfy
M-M~!=1 27

Because u = vy, where n is the spatial part of the 4 velocity,
we can rewrite the mass dyadic [Eq. (25)] as

M= E /c*(1 + uu/c?), (28)
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or, using Eq. (5), more suggestive of a projector as

M = my [T — uu/(u"u*)]. (29)
Hence, in component notation the mass tensor is,
MY =my[89 — u'ul/ (u*u?) ], (30)

or in terms of the projector onto the local 3 space, it be-
comes

This (matrix) is diagonalized by rotating the spatial coor-

dinate axes so that the velocity is along the x axis, yielding
[cf., Egs. (16) and (31)],

my> 0 0
Mi=1 0 my O (32)
0 0 my

This is just Eq. (25a) in matrix notation and in diagonal
form. We therefore have the quite reasonable result that the
eigenvalues of the (inverse) mass dyadic are the ordinary
(inverse) longitudinal relativistic mass and (inverse)
transverse mass (the latter with multiplicity two). The
eigenvalues and eigenvectors follow immediately from the
form of Egs. (23a), (25a), and (32).

V. GENERAL LAGRANGIAN AND
HAMILTONIAN ANALYSIS

We now formulate a general Lagrangian method for ob-
taining mass tensors and a Hamiltonian method for inverse
mass tensors, for quxte general dynamical systems (the La-
grangian method is applied in Appendix A to rigid body
rotation). We first derive the noncovariant EOM with this
method, reproducing the results obtained in the previous
section. The equations are then applied in Sec. VI to derive
the covariant (4-space) mass tensors.

A. Lagrangian formulation

The Euler—Lagrange differential equations for a general
system are?

4(oL)_oL
dt \dg; dq;’
where g; is the ith generalized coordinate. Using the chain

rule the time derivative can be written as (sum over repeat-
ed indices)

(33)

a9q; g,
d_9% 9 949 5 (34)
dt Jt dqg It gq Ot
Initially, assume that the canonical momentum,

(p;=0dL /d4q;), is not an explicit function of g, or of the
time ¢. Hence Eq. (33) can be written
. ( d:L ) JdL
G| o=
aqj oq; aq,
The right-hand side of this equation is just the generalized
force. Therefore, by analogy with Newton’s second law,

F = ma, we identify the (symmetric) effective mass tensor
as

(34)

d°L
9%, 94,
For a nonrelativistic point particle this is usually just m
times the unit dyadic (however, cf., our comments below

Mi=

(35)
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regarding solid state physics). For a free, relativistic, point
particle with Lagrangian (¢is the independent variable),'->

L= —mc&f(1=-v) -V, (36)
we obtain, using Egs. (35) and (36),
MY = my(8 + y'vi/c?), 37

the same as Eq. (25), except written here in component
form.

To treat the electromagnetic interaction we allow the
canonical momenta to be functions of ¢ and ¢. Then, in
place of Eq. (34) we obtain, from Eqs. (33) and (34),

q( a°L ) (9L —y ( a3L )_ d3L
! aqj ag; t?q, aqj' 94; ‘Ztaq,' .

Applying this more general form to the Lagrangian of a
charged point particle interacting with a given electromag-
netic field (charge g, scalar and vector potentials #,A),

L= —m&[(1—-v7) +q/cv: A —qd, (39)

we obtain, using Cartesian coordinates written in dyadic
form,

a: [my(I+ py*vw/c?)]
=[—qV¢+q/cV(v-A)]

JdA
— |g/cv - VA 4+ q/ —]
[q cv +qC5t

(38)

(40)

Rearranging terms, and using the vector identity
VX(VXA)=V(v-A) —(v-V)A

and the well-known expressions for E and B in terms of ¢
and A, we obtain

a- [my(I+9y*vw/c?)] =gE + ¢/cvXB. (41)

This is equivalent to Eqgs. (25) and (26) written for a
particular (E — M) force. The mass tensor is not changed
by this type of interaction. Now postmultiply this equation
by M~!, obtaining,

a=q/m,(P, +E+vxB/c) +g9/m,P,-E (41a)

Hence, not surprisingly, the transverse mass governs the
particle response to the full magnetic force and to the com-
ponents of electric field transverse (orthogonal) to the ve-
locity.

One could interpret the “extra” components of the mass
dyadic as giving rise to a relativistic (kinematic) constraint
“force”

— [mpy*(a-v)v/e?],

which is antiparallel (parallel) to v when the angle between
aand vis acute (obtuse). Hence, when the particle is speed-
ing up (a makes an acute angle with v) the component of v
perpendicular to a will undergo a “negative acceleration”
(cf., discussion in Refs. 6-8). Th1s is discussed further in
Appendix B.

B. Hamiltonian formulation

The Hamlltoman formulation of the general equations
of motion are?

JH

42
a4, (42)

Pi
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and
g, = oH . (43)
ap;
The canonical momentum p; is defined, as usual, as
dL /dq;.

To derive our general expression for the mass tensor we
begin by differentiating Eq. (43) with respect to time. We
use an expression for d /dr analogous to the one employed
above but remembering that H is a function of ¢,p (and
perhaps ¢) as a result of the Legendre transformation
H =p,4, — L. Hence we have,

E TN
' 3Pian ! apiaqj ! dp;dt '

Now use Hamilton’s equations once more to replace p and
g,

= (Goan) o) * (o) )+ (50)
l apiapj 9g; apia-qj ap; dp,0t
' (45)

For particles in a conservative potential we can drop the
last two terms. H is the sum of kinetic and potential energy
(H=T+ V) so that — dH /dg, is the jth component of
the conservative force acting on the particle. The accelera-
tion with respect to the ith generalized coordinate can now
be written as,

2
qiz( c?H)Fj,
apiapj

and the definition of a generalized inverse effective mass
follows immediately, viz.,

.A—l = aZH
! apiapj .

A number of comments are in order here.

(1) Replacing p, with #ik; in Eq. (47) yields a standard
expression for the effective mass in solid-state physics. '°

(2) Starting with the Lagrangian in Eq. (36) yields,
after solving for v in terms of p and performing the
Legendre transformation, the  Hamiltonian,
H= (pzc2 Tmi) + V. Itis left as an exercise for the
reader to verify that substituting this Hamiltonian into Eq.
(47) reproduces our expression for the inverse relativistic
mass, Eq. (23), in component form (after replacing p with
mvy). Hence Eq. (46), when written in dyadic form, be-
comes identical to Eq. (22). '

(3) Determining H using the Lagrangian [Eq. (39) ] for
a particle interacting with an electromagnetic field, Eq.
(47) will also reproduce our expression for the inverse rela-
tivistic mass dyadic, if one remembers to replace p with its
definition in terms of v at the end.

(4) For those cases in which M is nonsingular
(det M Y5£0) our results imply the analogue of Eq. (27),
namely,

(eanr) (o) =
X s — Y-
34,94, dp,9p;

VI. COVARIANT RELATIVISTIC MASS TENSOR

In this section we d}erivey the covariant EOM where the
proper time 7 is the independent variable. The correspond-
ing (invariant) Lagrangian and Hamiltonian will be de-

(44)

(46)

(47)

(48)

74 Am. J. Phys., Vol. 55, No. 1, January 1987

noted by L, and H_, respectively. Hamilton’s principle is

now
6 JLTdT =0,

yielding the covariant version of the Euler-Lagrange equa-
tions

d (8L, ) _dL,
dr \ag") a¢*
We denote derivatives with respect to 7 with a prime, e.g.,
g =dg/dr. The quantity in the parentheses is the covar-
iant canonical momentum, conjugate to ¢*.

With the same assumption of a conservative (nonelec-

tromagnetic) force, repeat the analysis leading to Eq. (34),
obtaining

(49)

(50)

9 2L, oL,
q = . (51)
dgvog”’/  dq*
Identify the covariant mass tensor N as
9L
N# = T, (52)
a qul a qV)

Now, to apply this formula, we need to select a suitable
invariant Lagrangian. For a relativistic point particle in
Cartesian coordinates, the most natural Lagrangian,' up
to an arbitrary additive constant, is

L = —mey(—uu?”)y —V,. (53)

The first derivative with respect to u* gives the canonical
momentum

P =meu/\( —u'u"), (54)
which yields the usual result, Eq. (6), when the identity

Eq. (5) is used. The second derivative (wrt #”) yields the
covariant mass tensor

N® =m(8" — u'u*/utu?). (55)
This is recognized as simply the product of the particle rest
mass rn and the projection operator onto the particles local
3 space. Hence, the eigenvalues of N are just 0 and m (the
latter triply degenerate). If we take the velocity along the x
axis and use an imaginary fourth component of #*, Eq.
(55) reduces to m times Eq. (16).

Writing out the EOM in Eq. (51), using our result for
the mass tensor N we have '

d 2 x¥
dr?
where K # is the Minkowski force, equal to AL, /dx*. It may
at first appear that this provides no new insight, inasmuch
as the left-hand side reduces to m d *x*/dr* because of the

orthogonality of the 4 velocity and 4 acceleration. Hence,
we simply recover the usual covariant form of /' = ma,

m(&* —uwu"/uu’) =K ¥, (56)

2
madx" _ gn, (57)
dr?
However, if we use the well-known relation
dr = dat , (58)
Y

for dr in Eq. (56), we obtain

2,v
[Vzd X +(7’d7’)uv] N* =K*,

(59)
dt? dt
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The second term within the brackets drops out because
u'N# =0, yielding,

2.V
VAN yuw _gn (592)
dt?
Divide both sides of this equation by ¥, and recall_ the rela-
tion between K ‘ and the ordinary force vector F’, viz.,

Also, note that when the index 1 50 only spatial compo-
nents contribute to the left-hand side of Eq. (59a) because

d*t /dt* = 0. Hence, we obtain for the spatial components
of the EOM,

2. . .
‘Zt’g YN = Fi (61)
or
dx/ AT
il e “»

Comparison with Eq. (30) shows that we have recovered
our noncovariant EOM and exactly the same expression
for the mass dyadic. Moreover, we now see that the 3-space
mass dyadic or tensor is simply obtained from the spatial
components of the 4-space mass tensor by,

M¥=yN?¥, (63)

In addition, through Eq. (55), a natural connection with
the projection operator onto the local 3 space of the particle
has finally been established.

The Hamiltonian analysis can be carried through in the
same manner as before, but now using r as the independent
variable. As an example, we use the following Lagrangian,
corresponding to a particle of mass m, and charge g, inter-
acting with a prescribed electromagnetic field,

L. = —mey(—uu?) + q/cutA*. (64)
The canonical momentum is easily found to be,
P=mu" + q/cA*, (65)

and the usual Legendre transformation yields the invariant
Hamiltonian,

H, = (p" —q/cA*)?/m + [ — (0" — q/cA*)?], (66)

written in an obvious short-hand notation. Note that, like
the Lagrangian, the invariant Hamiltonian is really a con-
stant, in fact equal to zero. However, as usual, it is only its
functional form that is of interest. The completely covar-
iant form of Hamilton’s equations can be manipulated in
exactly the same manner as before to provide an expression
for an “inverse’ mass 4 tensor N *
N — _aiH_f .
dp“op”

Using our expression for H, we readily obtain (after trans-
forming expressions in p* into expressions in #*),

N* =1/m(* — w*u*/u'u?). (68)
This is seen to be simply 1/m times the (by now familiar)

projection operator onto the 3-space orthogonal to the four
velocity. Moreover, we see that,

NN*=P. (69)

Hence, the two mass tensors are, in a sense, “inverses” of
each other within the local 3 space (although N cannot

(67)
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have a true inverse). We infer that, in general

Grar) Grar)
= P#9,
aquraqw apvapa

Some expressions for the kinematic portion of the invariant
Lagrangian L, other than the square root form appearing
in Egs. (53) and (64) (such as, e.g., 1/2mu*u*) don’t al-
ways yield the “correct” form of covariant mass and in-
verse mass tensors. We argue'! that the form of Lagrangian
we use is, in fact, the preferred form.

(70)

VII. DISCUSSION

The noncovariant EOM we derived in Eq. (22) is sug-
gestive of the form of a projection operator times the force
as v approaches ¢, forcing a to become orthogonal to v in
that limit. This is a reflection of the requirement that v must
remain less than ¢ for a massive particle. This observation
has motivated our efforts to try to understand the relation
among (1) the kinematic constraint u“u* = — ¢, (2) the
longitudinal and transverse mass parameters, and (3) pro-
jection operators in 3 and 4 space.

We have obtained quite general expressions for M, M,
and their 4-space analogues in terms of the system Lagran-
gian and Hamiltonian. The longitudinal and transverse
mass parameters m, and m, appear not just for forces par-
allel and perpendicular to the velocity, but as eigenvalues of
M relevant for any forces. Components of acceleration re-
sulting from any impressed force are therefore quite easily
calculated with the aid of M~". Evaluation of these tensors
leads directly to intuitively meaningful projection opera-
tors, and also displays explicitly the noncollinear nature of
the response to an arbitrary (and unspecified) force. The
appearance of the projectors has been shown, both by di-
rect analysis and by analogy with nonrelativistic rigid body
rotation, to be a consequence of the fact that any variation
in 2" must lie completely within the local 3 space of the
particle.

Our alternative way of writing the not explicitly covar-
iant EOM in terms of mass and inverse mass dyadics com-
plements other ways of analyzing the noncollinearity of
force and acceleration in relativistic particle dynamics. For
example, the “paradoxical” negative acceleration compo-
nents recently discussed in the literature are now under-
stood more intuitively in geometric terms, following an
analysis with mass dyadics and tensors, kinematic con-
straints, and the associated projection operators,
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APPENDIX A: PROJECTION OPERATORS AND
RIGID BODY ROTATION

Consider the Lagrangian for a nonrelativistic point par-
ticle of mass m constrained to rotate about the origin at a
fixed distance r

L=1/2m(oXr)> -V, (Al)

where r and o (i.e., d 0/dt) are the position and angular
velocity vectors, respectively. With the aid of the identity,*?

A-C B-C

(AXB)(CXD) = |/~ o

, (A2)
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for the cross product in Eq. (A1), we obtain

oL _ mr(I —rr/r?) - o,
do

(A3)

for the canonical momentum.
Using the identity
d _do 0
dt  dr do’
the Euler-Lagrange equations can be written,
do (3L
dt ( Jdwdw
Taking the derivative of Eq. (A3) we obtain, for the (gen-
eralized) “effective mass,”
9L
Jdode

We see that the effective mass is proportional to the projec-
tion operator corresponding to the constraint equation
2 2
r=r-
For a multiparticle rigid body 0 remains the appropriate
generalized coordinate. In that case Eq. (A4) becomes

d’0 . [
dt?

where the sum is over all the particles in the rigid body. The
weighted sum of projection operators within the brackets is

simply the usual moment of inertia matrix*'* written in
dyadic notation.

(A4)

) = Torque.

=mr*(I —rr/r?). (A5)

> m; ri(I—rx;/r) | = Torque,

i

(A6)

APPENDIX B: COORDINATE FREE DISCUSSION
OF RELATIVISTIC ACCELERATION

In this Appendix we look at the various components of
particle acceleration relative to components parallel and
perpendicular to v and F. We define the projection opera-
tors

Q, =FF/F? (B1)
and
Q, = I - QI’ (B2)

which project onto the one and two dimensional subspaces
parallel and perpendicular to F, respectively.

We first study the components of acceleration a relative
to the velocity vector. Consider a general force in Eq. (24),
using Eq. (23a) for the inverse mass dyadic, viz.,

a=F-(P,/m, +P,/m,). (B3)
From the meaning of the projection operators, the compo-
nent of acceleration parallel to v is simply,

a, =F-P/m =F,/m, (B4)

showing the obvious result that the acceleration will tend
to speed the particle up if the angle between the force and
the velocity is acute. Similarly, the component of accelera-
tion perpendicular to v is

a,, =FP,/m,,
=F,,/m,. (B5)

Using Eqgs. (B4) and (BS5) one calculates the components
of acceleration more simply than with Eq. (2) inasmuch as
m, and m, remain the only parameters needed for arbitrary
directions of the force.
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To obtain the component of acceleration parallel to the
force vector F postmultiply Eq. (22) by Q,,

a., =c*/EF - (1 —vwv/c*) - FF/F?
= 1/(F?E)F[F%?— (F-v)?]. (B6)

We see that for all v < ¢ the component of acceleration in
the direction of the force is positive. However, Eq. (B6)
shows that if there existed positive energy particles travel-
ing faster than the speed of light (tachyons) then for suffi-
ciently acute values of the angle between force and velocity
the expression within the brackets could become negative,
causing the acceleration to be in a direction opposite to that
of an applied force.'>®

To obtain the component of acceleration orthogonal to
the force vector, postmultiply Eq. (22) by Q, obtaining

ap, = — ¢/E(F+v)[v: (I1—-FF/F?)]. (B7)

The expression within the brackets is simply the projection
of the velocity vector onto the plane orthogonal to the force
vector. One readily sees that if the angle between the force
and velocity is obtuse (acute), leading to a negative (posi-
tive) value of (F - v) then the acceleration components or-
thogonal to the force will be in the same (opposite) direc-
tion as v.,. In other words, if the force is slowing the
particle down, any nonzero components of velocity orthog-
onal to the force will increase in magnitude, and converse-
ly. This is the so-called “negative acceleration.”
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Harold S. Zapolsky

Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08854

(Received 15 July 1985; accepted for publication 7 January 1986)

A simple argument is presented to make plausible the theorem that a homogeneous dielectric
placed in a uniform external field is uniformly polarized only if its shape is ellipsoidal. Expressions
for the depolarization factors are displayed in a form which makes immediately apparent the well-
known sum rule. An additional symmetry relation between the depolarization factors is used to
write integral expressions for them. It is shown that these factors reduce to the standard form.
Neither Dirichlet’s integral representation nor ellipsoidal coordinates are used in this derivation,

L. INTRODUCTION

The problem of determining the electric field inside a
homogenous dielectric (and its magnetic analog) was dis-
cussed almost 100 years ago by Maxwell in his famous
Treatise.' The well-known result is that, if the external ap-
plied field is uniform, and the dielectric has an ellipsoidal
shape, then the internal field (and, therefore, the polariza-
tion) is uniform. This is an intriguing result, and students
often ask if there is a simple way of proving it. I have not
found an explicit treatment of this problem in the most
popular modern textbooks; however, a thorough treatment
is given in the classic texts by Becker and Sauter” and Strat-
ton,® and depolarization factors have been evaluated nu-
merically and analytically for certain limiting cases by Os-
born* and Stoner.® They reproduce Maxwell’s calculation,
which, in turn rests on the integral expression first derived
by Dirichlet for the potential inside and outside a uniform-
ly charged ellipsoid. Sommerfeld® derives the result some-
what more directly by solving Laplace’s equation in ellip-
soidal coordinates. Ellipsoidal Harmonics’ can also be
used to solve the problem.

All of these derivations introduce mathematics which is
somewhat apart from the “mainstream” techniques which
we teach to our beginning graduate students, and they are
all specific to the ellipsoid; while these works'~® strongly
suggest that the ellipsoid is unique in having a uniform
depolarization field, none of them offers a proof.® Portis®
gives a nice discussion (following Newton) which shows
that the uniform polarization of the ellipsoid arises natural-
ly from the same property of the sphere. Recall that, at any
point inside a uniformly charged spherical shell, the net
contribution to the field from two charge elements located
at opposite ends of any chord drawn through that point and
which subtend the same solid angle, is zero. This property
of “cancellation by pairs” is preserved under uniform dila-
tions (x—ax, y— By, z—yz) of the sphere with respect to
any three orthogonal axes, and such dilations distort the
sphere continuously into an ellipsoid. Since a polarized el-
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lipsoid can be thought of as a superposition of infinitesimal-
ly displaced uniformly charged ellipsoids of opposite sign,
the argument works for polarization also. While not a
uniqueness theorem in itself, this argument certainly en-
hances the physical plausibility of such a theorem. I am
indebted to one of the referees for calling Ref. 9 to my
attention.

In this paper I shall first show that, of a broad class of
symmetric shapes, the ellipsoid is the only one which ad-
mits 2 uniform depolarization field; I shall then rederive
the well known sum rule for the depolarization factors, and
simple expressions for these factors which, I believe, are
somewhat more physical than the standard ones. In parti-
cular, in the form in which they are displayed, these factors
exhibit an additional symmetry relation which I exploit to
calculate all three of them, given an analytical expression
for just one of them. Finally, I will show that my results
reduce to the standard expressions for the general case, and
give the usual analytic expressions for spheroidally sym-
metric shapes. My derivation relies only on some well-
known properties of surface integrals of homogeneous
functions, and the spherical harmonics.

II. THE POTENTIAL INSIDE A SYMMETRIC
DIELECTRIC

Consider a piece of dielectric with constant scalar sus-
ceptibility y, which is bounded by a surface determined by
the equation f(x,y,z) = 1, with

Sxpz) = (%)k + (%)k + (g)k (1)

where X is an even positive integer. For k = 2 and a5 ¢
this is the triaxial ellipsoid. In the presence of a uniform
applied external field E,, the interior field is given by the
superposition of E, and the so-called depolarization field
E, produced by a surface charge P « n, where P is the polar-
ization and n is a unit normal vector directed out of the

© 1986 American Association of Physics Teachers 77



