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ABSTRACT

Correlations in the failures of subsystems or components may arise
when they share a common, random environment. We show that a natural
tool for calculating the reliability of such systems is the characteristic
functional of the random hazard rate, n(t). Some general results for the
reliability of series and parallel systems in terms of the characteristic
functional of the hazard rate are derived and applied to a number of
models of random environments. The applications include random hazard
functions arising from 1) non-fatal shocks of random amplitudes, 2) a
Markovian, Gamma-marginal stochastic process, 3) system stress related
to un-repaired damage from incoming rounds, and 4) impulsive and

accumulated heat stresses from a laser battle.

[._INTRODUCTION

Consider a system whose components are subject to a random

environment!, possibly including random shocks. In general, the ith
component hazard rate, h;(t), may be written as the sum of two parts.
The first (deterministic) part, A;(t), accounts for wearout and those

random failures which occur independently for each componeni. The

second (stochastic) part, gi(t), arises from those environmental

conditions which are shared by two or more components in the system.



We develop a general formalism for calculating the retiability of a
system in a random environment in terms of the characteristic
functional of the hazard rate. Various models of random environments
are then proposed and the corresponding expressions for the
Characteristic functionals are calculated. The reliability of systems in
such environments are then found using these characteristic functionals.
The equivalent, deterministic hazard functions for single components in

some of these models are found not to be constant in time2.

In Section Il the general formalism is introduced and illustrated for a _
single component subject to an environment which includes non-fatal
shocks with random amplitudes. In Sections Ii] and |V the reliabitity of
series and paraliel sgstevms is presented in general terfns and applied to
the non-fatal shock model. Section V presents a model for the hazard
rate as a Markovian, Gamma-marginal stochastic process. Finally, in
Section VI we present three models in which the failure rate is
proportional to system stress. Each of these models can be applied to
multi-component systems using the methods developed in the earlier

Sections.

li. One Component

The simplest case is that of one component with hazard rate h(t), a
non-negative stochastic process. The reliability of the component,
subject to a particular realization of the environment (hence, h(t) ) is

defined as,

An(t) = PrT > t, (1)



where T is the random variable (r.v.) equal to the time the component
fatls and the subscript denotes a particular realization of the stochastic
process. h. Using the usual definition of the hazard rate3, this is,
t
Ry = expl -[h(t)at’ ]. (2)
0

Hence, averaging over the random environments we have,

t
R = Bl Ryl = ECexpl ~fn(tIat 1) (3
0
or,
AL = O] e (4)
where,
t
ChdmO) = Eexpl ifn(t) nthat 1, (5)
0

defines the characteristic functional®5 of the hazard rate. In other
words, this characteristic functional, evaluated for a particular value of
the test function, m(t), yields directly the reliability of a component.

We will see below how this generalizes to multi-component systems in a

random environment.

We can write the reliability of a component or system in terms of an

effective, deterministic hazard rate, n(t), using the usual definition of



hazard rate,

n(t) = - da/at In{R(L) },
but we must remember not to use this *hazard rate” to calculate
reliability of larger aggregations, unless such aggregations are composed

of components or subsystems not sharing a common, random environment.

Deterministic hazard rate plus random shocks

If the environment gives rise to non-fatal random shocks with rate b’(t),
then the hazard rate may be represented by a deterministic function,
A(L), plus delta function spikes, possibly with random amplitudes. For
convenience we will sometimes replace A(t) or ¥(t) with constants.
However, in all the reliability formulas derived here, At can always be
replaced with [A(t")dt’ for non-constant background hazard rate, and ¥t
can be replaced with [¥(t')dt’ for a non-homogeneous shock process.
Note that A(t) may be really an effective hazard rate, obtained from the
preceding equation, when one portion of the random hazard rate is unique

L0 each individual component, i.e. not shared among separate components.

The hazard rate for non-fatal shocks occurring at times tj is,

n
h(t) = A + zo<j st —tj), (6)
J=1



t
L

where the pdf of the t; is (W)/n, n o= [¥(t)dt, and nis a

0]

Poisson r.v. with mean n .

The characteristic functional of this process, derived in Appendix A, is,

t t
ChtlnOI = explin [n(t)at + [¥(t) [C (L)) - 1lat), (7)
0 o

where C_ is the ordinary characteristic function of the shock

amplitudes, . In particular, if the shock amplitudes have an
exponential distribution (parameter §) then,
Clw) = 8/[6 - i w], (8)

and,

t t

ChtnOI = explin fn(t)at + ifs(t) n(t)/16 - intHlar).  (9)

0 0

Hence, setting n(t’) = i, the reliability is,

R(t) = exp{-At-n /I6 + 1)), (10)

or, assuming a stationary environment (% = const.) and using o = 1/8,

R(t) = exp{ -At - ¥t o /x + 1] ). (11)



The effective hazard rate, h(t), is constant for this model. Note that as
x -> oo the rate of failure becomes A plus the rate, ¥, of occurrence of
(fatal) shocks (in fact, A could be a background rate of infinitely high

shocks).

Il Two different components in the same environment

If two or more components are in different, independent environments
the system reliability follows from the usual formulas3 expressed in
terms of the individual reliabilities. We consider here two different
components seeing the same environment. The reliability of two
components in series subject to a given realization of the environment'é‘l
conditions is,

Rp(t) = PRT >t] = R, (8 - By (0. (12)

If the components are in a parallel, redundant system the reliability is,
Rp( = 1 -0 =Ry (11 - R, (] (13)

= expl - fhy(t)dt’ 1 + expl -[hp(t)dt' | - exp{ -[In,(t) + hy(t)] dt” },

where all integrals are 0 -> t. Hence, averaging over realizations of the
environment we have, using the definition of the characteristic
functional,

R(L) = (14)

Ch't[ﬂ(')] I"l(')zi * Ch,t[ﬂ(')] Iq(-):] h Ch]*hz,t[ﬂ(')] lﬂ(')“

Clearly, the last term also represents the reliability of a series circuit



with the same two components. In the following it will be understood
that all characteristic functionals are for the processes over the

intervat [0, t].

As an example, consider two components in series, seeing the same,
shocks, but experiencing different amplitudes, «, k8; where o« and 8 are
i.1.d. exponential r.v's. Then h; + h, is given by
n
h(t) = Ay + Ay + Z(o<j+KBj)8(t‘-tj). (19)
=1
In this case C in Eq. (7) is replaced by the characteristic function of
the sum of two exponentials,
oLw) = 8/[8 - iw] - 8/(8 - iwk], (16)

and A is replaced by A, + A, yielding,

t
Chyen IO = expl iy +Az) [ (t)at’ } - (17)
0
t
exp{ [(t)dt'[ §/(8 - im(t )] - 8/(6 - in(t)k] - 11}
0

The reliability of the series system is then found by substituting

n(t’) = i, yielding,

Reeries(t) = expl -\ At - Btl 1 - 82/[(5 « )+ K1) (18)

The parallel system reliability is given by,



RYD = R+ Rpt) - Agerealt) (19)

where Ry , are the same as Eq. (10) with § replaced with § and §/k,

respectively.

If o= B in the above, i.e. the amplitude of shocks seen by the two

components are proportional, then we have,

n
M)« holt) = Ay + Agp + (14k) D & §(t" - tj). (20)
j=!

This is the same as for a single component, except Ag => Ay + A, and

§ —> §/(1+Kk), hence,

t

Cryen (MOT = explliCAy+Ag) fn(t)at’ ) - (21)
0]
t
exp{ [¥(t")at’[ 8/[8 - im(t) (k+1)I - 11},
0

and the reliability of a series circuit is,

Roeries(t) = expl - (N + At - Bt [(k+1)/(8+k+1)] ). (22)

The reliability of a paralle! circuit is again given by Eq. (19).

IV. m-Identical components

For m components in series, subject to a given realization of the

environment, the reliability is,



Rh(t‘) = Rhl(t) ha(t) Rh3(t) Tt

t

= exp{ -f(hy + - -+ h)dt’ ). (23)

0]

Hence, averaging over the environment, the reliability is,
R = Chpepye- IO ey - (24)

a) If all components respond to a given shock with independent

amplitudes we obtain,

Ry(t) = exp{ -mxgt + Bt [6M/(8+ 1) - 1]}, (25)

b) if the hazard rate is exactly the same for all components,

Rp(t) = exp{ -mAgt + ¥t [6/(6+m) - 17}, (26)

The effective hazard rate, h(t), is again constant. Note that
(1 1/8)M=1+m/s+- -

hence,
(11780 > 1+ m/s,

or,
§M/(s+1)M < §/(8+m),

which implies that R, < Ry. In other words, as expected, the reliability

of a series system is higher in the more highly correlated environment.
Also, using Eq. (19), it is clear that the reliability of a parallel system

will be lower in a more highly correlated environment.



m-ldentical components in parallel

The reliability of m-identical components in a parallel redundant system
subject to a given realization of the environment is,
m t
Ro(t) = 1 - T[1- exp{-[h;(t)at’} 1. (27)
J

H
—

0

This can be expanded using binomial coefficients, ij , s,

m

Rr(0) = 1 = Z ()T CM 1Ry (6)-Ry (1) (28)
=0

Hence, averaging over the environment, we have,

3

Al = 1 =T ()M e ot expt it (81754 1)) - 1)), (29)
j=0
for independent response to the shocks, and,

m
RLE) = 1 -5 (=) cm, e 1Mol expl ¥t [8/(5+4) - 11}, (30)
j=0
IT there is exactly the same hazard rate for all components (each

component sees exactly the same amplitude shocks).

In general, for m identical components in parallel, all with the same

hazard rate, h(t) = Ag(t) + g(t) (where g(t) is random),

10



m
A = 1 - Z )M expl - ag(t)at) CnON )= (31)
j=0
From the foregoing it is clear how to generalize the formulas for
reliability in a random environment to more general configurations
containing components both in series and in parallel: |
1) using the usual rules for probabilities, write the reliability of the
system in terms of the individual component hazard processes,

conditioned on a given realization of the environment, hence of the

[hj(t)} (cf. Eq. 27),

2) average over the environment, hence over the {hj(t)},

3) express the result in terms of the appropriate characteristic
functionals (cf. Eq. 31), and finally,

4) obtain the effective component or system hazard rate, h(t).

V. Exponential/Gamma Hazard rate

Consider an environment giving rise to a Markov hazard rate process with
a Gamma marginal -7 distribution which is common to all components
in the system of interest. We show in Appendix B that the

characteristic functional for such a process is,

t t t

CamO = explufat’ F(E6/18 - ifdt n(t dexp(-[¥(T)de)l - 1 . (32)
0 t’ t’

R



The correlation function for this process in the stationary case

(¥ const.) is p = e 8T when v=1 the process is exponential.

The reliability of a single component with hazard rate n(t) = A(t) + g(t)

is then,

R(t) = expf ~j?\(t’)dt'}-Cg[”q()]in(_):i . (33)

carrying out the resulting integrations yields,

R(t) = (34)
exp{ ~ (L)AL -0Bt/(35+ 1)} - (¥6/(36+ 1 - e SL)O(BE+2)/(38+1)

The effective hazard rate, h(t), is clearly not constant for this model.

This can be generalized to multi-component systems with the methods
from the previous sections. For example, the reliability of m identical
components in series is obtained by replacing A -> mA and using

N{) = m-i in the characteristic functional. From Eq. (32) it is easily

seen that this leads to replacing § with §/m in Eq. (34).

vl Failyre Rate Proportignal to System Stress

In this section we will consider three related maodels of hazard rate
processes. In the first model we assume the rate of failure is
proportional to the number of customers using the system, for example
the rate of wear on a highway may have a component which is
proportional to the number of automobiles, N(t), using the highway. In
the second model the failure rate of a major system (for example on a

battleship during combat) is increased proportional to the amount of

12



un-repaired damage (the number of hits not repaired is N(t), the amount
of damage/hit is some positive r.v.). Both of these models are related
L0 a generalized M/G/e queue. Finally, we model the reliability of
electronic systems in a laser battle scenario. Failures may be caused by
impulsive stress caused by a laser hit, or by accumulated heat from the
laser hits. [t is found that none of the models in this section lead to a

constant effective hazard rate.

Highway model

Consider a large muiti-lane highway in which the traffic level is such
that cars do not interfere with each other. The number of cars on the
highway can be modeled as an M/G/% queue. The rate of arrivals of cars
to the highway is ¥(t) and the pdf of the time spent on the highway
section of interest is b(z) (the "service” distribution). The hazard rate
is modelied as h(t) = A(t) + 8 N(t). We show in Appendix C that the

characteristic functional of the hazard rate can be written as,

t
Chlmn (] = exp{ -fAlt)n(t)at’} - (35)
0
t 0 t'+7
exp{ [¥(t)dt'l1 - [dzd(T)expli[Bn(s)ds) 1 }.
0 0 t

For example, when the transit time is exponentially distributed,

parameter j, the reliability can be evaluated as,

R = e M exp{ -¥Bt/(u+B) + B/ (u+B)2 1 - o (Bt y. (36)

13



And when the transit time is equal to v with probability one, the
reliability is,
R(t) = e M exp{ -3t - 3/8 - [1 - e™BT] - y(t-7)e™BY), 37)

whent > 7, and

R = e M exp{ -3t - ¥/8 - [1 - Bl ) | (38)

when t < z. These formulas generalize as shown above for components

in series and/or parallel systems.

Battle Damage Mogel
Assume that incoming rounds hit a ship according to a non-homogeneous

Poisson process, rate ¥(t), during a battle. The amount of damage to the
ship per round (or, really, the increased system stress resulting from
each hit) is given by a random variable, B, with some non-negative
distribution. Let the pdf of the time to repair the damage from each hit
be b(z). If the failure rate of the total system contains a term which
Increases proportional to the amount of un-repaired damage (possibly
because of increased demands made on the rest of the system), then the

hazard rate is,

n

hty = At + k> B}-{e(t-tj)—e(t—tj —’L’j)}. (39)
j=1

The stochastic portion of this corresponds, for example, to the total

weight of customers in a non-homogeneous M/G/c queue, where each

14



customer has a random weight, ﬁj. In Appendix C we derive the

characteristic functional for this process. Applying that result we have,

in general,
t U+t

R() = e M exp{ -fdt's(t) 1 - Coln(s)asib(m)de 1} ()., (40)
0 U

where CB Is the ordinary characteristic function of §. If B is a constant

this reduces to the previous model. Again, for m components in series
replace A with m\ and evaluate the characteristic functional for
n() = m-i. For parallel configurations £q. (C4) can be used in

conjunction with Eq. (31).

One example that can be worked out in closed form is when g is an
exponential random variable, parameter ¢, and the system cannot be
repaired during the battle, i.e. b(z) = 8(z - =). The reliability of a

single component is easily calculated using Eq. (40) to be,

R(t) = e (BNt { (¢ + t)e )8 (41)

and for m identical components in series we obtain,
R = e (MM ( (¢ v miy/e 1E8/m. (42)

Laser-Battle Model

We now model the failures of electronic systems in a laser battle as,
1) immediate failures resulting from impulsive thermal or kinetic

shocks, or 2) random failures brought about by the accumulated thermal

15



stress from repeated hits by laser beams. The background hazard rate is

again represented by A(t). Assuming an exponential cooling law, the

hazard rate resulting from laser hits at times {tj} is,

n
A1) = A ¢ T lecd(t-t) + Bl -t e Xty (43)
=1
where the second term represents the contribution to AT (increase in
the system temperature) resulting from the laser strike at time tj.
Using the same methods as in the Appendices it can be shown that the

characteristic functional for the stochastic part of this process is,

t t

CIn()] = exp{[at's(t) [ explfds n(s) r(s - t)] - 11}, (44)
0 t’
where,
(s -t) = «8(s-t') + Bo(s-t)eX(Et) (45)

Hence, the reliability is,

R(t) = e Al exp{[at' () [ expl ~« - B/x-(1 - ¢ K(t-t) N-11}1 (48)
For m identical components in series, seeing exactly the same
environment, Eq. (44) is modified by multiplying A, o< and 8 by m. The

non-constant effective hazard rate, h(t), can be read directly from

Eq. (46), e.q. for m identical components in series it is,

16



A = mAlt) + 3(t) { expl -mec - mB/x-(1 - e XKWy 21y (46)

Note that ¥ is not multiplied by m. All components see exactly the same

shocks from laser strikes.

More generally, we could model different types of laser weapons, ranges,
atmospheric propagation, etc. by taking o« and 8 as (correlated) random
variables. The above equations can also be generalized if the
components are not identical but have different vulnerabilities, thermal

conductivities, etc.

VIl Conclusion

We have presented a general formalism for calculating the reliability of
multi-component systems subject to a random environment. The
correlation in failures of different components can be accounted for by
calculating the system reliability in terms of appropriate combinations
of the characteristic functional of the random hazard rate, evaluated for
n() = %] {j=1,n; i =/(-1)}. We have shown how the method may be
used in different circumstances by applying it to a number of different
models for the random environment. Our results include non-constant
effective hazard rates for some of the random environment models. The
intuitively reasonable result that the reliability of series (parallel)
systems is greater (less) in a correlated environment than when the
components see independent environments has been demonstrated for
some of our models. Although we have only considered series or parallel
systems, the application to more complicated systems containing

components both in series and in parallel is straightforward.
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hazard rate and exponential lifetime distribution.
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1981.

M. 5. Bartlett, An Introduction to Stochastic Processes, 2nd edition,

(Cambridge University Press) 1966.

D. R. Cox and V. Isham, Point Processes, (Cambridge University Press)
1980.
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6. E. Rockower, "The Gamma/Exponential Markov Process”, NPS T.R. 1986

7. S. Ross, Stochastic Processes, (Wiley, New York) 1983, p. 212ff.

8. The idealized model of a textile yarn discussed in, D. R. Cox and H. D.

Miller, The Theory of Stochastic Processes, (Wiley, New York) 1965,

p. 366 ff., can be seen to be equivalent to the M/G/s queue.

Appendix A. Derivation of the Characteristic Functional for Impulses =

We now derive the characteristic functional for the hazard rate resulting
from random delta function impulses. Unless otherwise noted, we define
the characteristic functional for the process over the interval 0 -> t.

First, the random part of the hazard rate, g(t), is defined more explicitly

as,

n

Q(t) = Z 0<j st - tj), (A1)
o

where n has a non-homogeneous Poisson distribution, P, With mean,

t

no= [ ¥t (A2)
0

the t;

J have pdr given by 3(t')/ n "(as is appropriate for a
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non-homogeneous Poisson process), and o j have an arbitrary distribution,

f((xj), with ordinary characteristic function, C The characteristic

functional for g(t’) is,

t
ConG = Elexpl ifn(t) gt) dt] }, (A3)

0

or, o N
= Ton (TLffat B/ dog floc) ef % D,
n=0 j=1

where the integration over tj is O -> t the integration over ] is 0 -> o0,

Wwe have made use of the Dirac delta function to perform the integration
aver t'. The product over j now reduces simply to the expression in the
square brackets raised to the nth power because of the independence of

each term in the shot noise-like process. Performing the average over n

(yielding the standard result for the generating function of a Poisson

distribution) and the integration over o (yielding the characteristic

function for the amplitude distribution) and taking the limit T -=-> oo,

results in,
t t
Cm[ﬂ(')] = expf iAg/m(t)dt" + [¥(t) [Co(( nt’) ) - 1lat'}, (A4)
0 0

where we have included the (independent) characteristic functional for

the deterministic portion of the hazard rate.
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Appendix B. The Characteristic Functional of the Gamma Process®

Using the results of Appendix A, Eq. (A4), the characteristic functional
of randomn delta function impulses (rate v¥(t) ) with exponential

amplitudes (parameter §), is,

o]

Cg[ﬂ(')] = exp{i[dto¥t)n(t)/[6-int)]}. (B1)

—0Q
I this shot noise is fed into a first-order linear filter (decay parameter

¥(t) ). the resulting process, x, satisfies,

X +¥x = g (B2)

Now, to find the characteristic functional for the process, x(t), subject
to the initial condition, x(0) = g, use the solution of the stochastic
differential equation, (letting ¥ be constant to make it easier to follow

the derivation) in the definition,

AN = ECexpl ifn(t) x() dt] ), (83)
0

or,

= explixgfdt n(t)e™ 1) - explifat n(te 3t [atedt o(t-t") qt?) ).
where we have used the properties of the Heaviside unit step function,

6(t-1'), so that all the integrations are over 0 -> oo, thus making it

easier to interchange the order of integration to give,

21



CAn() = | (B4)
explixgfdt n(t)e™®Y - expfifat’ g(t?) [jdte‘x(t"t') o(t-t") n(t) 1.

The second exponential term is now of exactly the same form as the
characteristic functional for g(t), with the expression in square brackets

replacing n(t’). Hence, making use of Eq. (B1) we have,

C MO = explixgfat n(t)e 3t = (B5)
0
exp {ifdt' v¥ [fdt e ¥ qet)] 7 15 - i [fate e 1),
0 t' t'

where we have used the properties of the step function.

To determine the marginal distribution of this process use
n(t) = Mg &(t-tg), which recovers the ordinary characteristic function

for x(tg). A straightforward calculation yields,

Cutto)Mol = explingxoe™@%l - (15 - ing e™¥t0] / [s - ingl JV.  (B6)

y o
foor VY
ATNis is the characteristic function of ar.v. that, with probability

x = 870 has the value ><Oe'2{t , and with probability (1-«) is the sum of
Ut

Xge Y~ and a r.v. with exponential distribution of parameter §.

Now, taking ty --> e Eq. (B6) yields the marginal distribution of the
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steady state process,
Cu(oo)Mal = {8718 - imglt? | (B7)

i.e. the characteristic function of a Gamma distribution, as promised.

Appendix C. The Characteristic Functional of an M/G/% Queue. and

Extensions
The M/G/e queue may be modeled as shot noise impulses of unit

magnitude® ( "customers” arrive with rate ¥(t), n is again Poisson ),

n

gV = T s-ty, (€
j=1
which have been filtered through a linear sgétem with a random response
function given by,
r(t-tj) = e(t-tj) - e(t—tj-tj), (C2)

I.e. a unit height pulse with random duration, T (the random "service”

time). Hence, for Bj = 1, the number in the system at time t is,

n
NO =3 B le(t- ) et -t -zl (C3)
j=!

we have included the factor, ﬁj, so that we can allow the system
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response to also have a random height, corresponding to a random weight
(or damage, system stress, pollution, etc.) of each customer. Using the
definition of the characteristic functional and following the same steps

as in the previous Appendices, we obtain,
00 n o0

2. b (T jfjdtjx(tj)/ﬁdﬁj f(ﬁj) dtjb(tj)exp[iﬁjj'dsn(s) @(s,tj,tj)] L
n=0 =1 o

where @(s,tj,tj) = ot - tj) - 8(t - Y -rj). Again using the
independence of each term in the product, and the fact that they are all

the same, we can perform the summation over p, (Poisson), and the

average over B (obtaining the ordinary characteristic function, CB ).

Finally, the characteristic functional may be written,

t -t
CInC = exp{ -fat'a(t) [1 - Cg(/n(s)ds)b(z)dz | }. (C4)
0 t’
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