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{ , CHAPTER 1

Introduction

During the period preceding the publication by Einstein
of his paper on the theory of relativity, a number of authors
considered electromagnetic phenomena associated with sources
travelling at velocities greater than that of light} These
considerations were neglected after the impossibility of accel-
erating a particle beyond the speed of light was shown by
Einstein in 1905. Ironically, the first observation of the
electromagnetic‘emission characteristic of charges moving
faster than the phase velocity of light in a me?%%?ygﬁiyappar-
ently made by Madame Curie only five years later,, The nature

{' of this blue-white Cherenkov radiation was not recognized until

extensively studied by Vavilov, Cherenkov and Frank & Tamm in

the thirties.[37]Cherenko, B7] Frank +Tammm, Fy]Telley, fe]cherenkey,
[Zo] T'a.*m‘m,
We rnote that Cherenkov radiation can be viewed from a more

genieral point of view. For example, we consider the various
Cherenkov effects that might occur if the propagation velocity
of a field (or the limiting velocity of a particle) were in-
creased or decreased because of general field;,~field or field-
particle interactions.
In the event that the propagation speed of a field ¢

exceeds the Einstein speed c any‘other field ¥ with which

¢ couples might be Cherenkov radiated by ¢ . If a

¢ﬂ; propagation velocity is decreased with respect to ¢ (as
happens with light in ordinary Cherenkov radiaticn) then there
is the possibility that ¢ itself will be Cherenkov radiated
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2
by other parfcles or fiields ¥ with which it couples.

( Cherenkov effects are also likely to occur in situations
in which particle speeds always exceed the Einstein speed c.
Renewed interest has been awakened in this last possibility,
in the past decade or so, particularaiygxfggpBarsécles of
Bilaniuk, Deshpande and Sudarshan (1962)A and Feinberg (1967).

In this thesis we will be particularly concerned with
this last case in which the particle speed is always greater
than the speed of light in a vacuum.

~In chapter II certain anticipated properties of faster

than light particles (dubbed "tachyons by Feinberg) will be
reviewed. Also we will take notice of the difficulties

presented by the localizability, instability and unitarity

| problemsg of tachyon theory, and of the paradoxes associated

{; with the possibility of signals traveling backward in time.

A number of experiments that have been performed to try to
detect tachyons in spite of the unresolved problems are then
described. These include missing mass, Cherenkov radiation
and extensive air shower searches.

In chapters III and IV we will extend our considerations
to those aspects of tachyon behaviour which may be particularly
relevant to the detection of such particles. The property of
tachyon interactions which is singularly characteristic is
that of Cherenkov radiation of other particles from tachyonic
soarceses Since this emission may be quite important to many
aspects of tachyon behaviour (e.g., range, trajectory, detect~
ability, and the resolution of paradoxes), we analyze in de-

tail the generalized Cherenkov emission of a massive (normal)
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( field.

Initially certain aspects of the motion of tachyons will

be derived on the basis of a classical single particle picture
of a superluminal object acted on by various forces. Some
Lorentz transformation properties of the dynamical variables
of the tachyon, such as that of its acceleration, are discussed.
The counterintuitive relation of the direction of the accel-
eration with reppect to the direction of the force, faund
qualitatively bnggéuni-k-niilaﬁ is derived quantitatively.
We then show the relation of these results to Cherenkov radia-
tion. Also we present trajectories of a charged tachyon in
certain electric and magnetic fields relevant to experiments
already performed.

{ From this classical model there are then two transitions
which must be effected. The first transition is to introduce
a free quantized field which has the classical particle
tachyonic motion as a limit of wave packets that arise on
taking appropriate field operator matrix elements. We may
then look at classical fields (the matrix elements of the free
quantum fields) whose Fourier components obey the energy-

momentum dispersion relation characteristic of tachyons, g.e.
/42 2
Fi= fp)-(me)
It is natural to require that both E and f be real (theory
of type I), but that implies that /f/ Z> me ,
which leads to severe difficulties in the localization of

( J67] Fiermberg,(69] Peres,
R tachyons/A’ In theories of type II one allows all real values
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({ of -f , thus avoiding localization problems, but the assoc-
iated imaginary E's produce severe instability problems.
Furthermore theories of type II do not possess the Lorentz
transformation properties we would like any physical theory
to have. Unfortunately it turns out that free theories of
type I also fail to have the desivfed Lorentz transformation
properties, so we are forced to make the second transition in
order to reacquire those properties.

The second transition is to introduce two kinds of inter-
actionss onekind which creates and destroys tachyons in such
a way that no tachyon ever escapes to spatial infinity (thus
solving the Lorentz covariance problem), and a second kind
in which tachyons are (massive or massless) Cherenkov sources

{ for ordinary matter. For electrically charged tachyons there
is a radiation reaction/ggggsced by. its Cherenkov radiaticn.
We will show that there is the possibility that more general
types of interaction could give rise to a Cherenkov radiation
of massive fields. Hence the two transitionsy 1) frcm the
classical particle tachyons to quantum fields with localiz-
ation and Lorentz covariance prolilems; 2) from externally
applied forces to radiation reaction forces from a genwral-
ized Cherenkov radiation.

The modification of the trajectory produced bytthe evol-
ution of the tachyon's radiative environment under these
conditions: will then be found. A new type of hyperbolic

motion in configuration space will be shown to oorrespond to

—~

St a certain invariant rate of evolatibnof each k component of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(j the tachyon wave packet over it# mass hyperboloid in k space.
Thigs motion on the mass hyperboloid will be found through
appeal to lLorentz covariance considerations. The configur-
ation space evolution of the radiating tachyon (relevant to
the classical particle picture), can be deduced from the
momentum space evolution.

The characteristics of the radiated field are invest-
igated next. The energy which is radiated into the field
is found to agree with the tachyon:. energy loss formula
found in the preceding sections. In order to calculate that
energy loss and the features of the radiation we pursue two
models. Not surprisingly, certain simplifications arise if
we first treat {he tachyon as a prescribed classical source.

In the case that the source velocity is held constant certain

R

characteristics of the massive Cherenkov radiation may be
derived by looking at the resonant coupling of scurce to
field. That is, we first look at the Fourier transform of
the charge, In this way we find the relation of angle to
energy of emitted massive particles. In contrast to ordinary
Cherenkov radiation there is a range of angles of emission,
including the forward direction. We also find a2 minimum value
of the wave vector depending on the mass of the radiated
field. We next perform a more detailed calculation of the
radiated massive field (which we call the "pi* field). We
derive the.energy radiated per unit time as a function of
angle and frequency for a general charge distribution. In

this model we also derive the pi radiation emitted at the
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( creation and destruction events terminating the world-line
of the tachyon, in analogy with radiation emitted during beta
decay (inner bremsstrahlungﬂki]ihck$o4,

That there can be Cherenkov radiation of massive fields,
is significant in any attempt to detect tachyons produced
through strong interactions. However, we find that for cer-
tain charge distributions this potential radiation might be
inhibited or even completely suppressed.

We wish to take account of the effect of the hyperbolic
motion of the tachyon on the Cherenkov radiation. Therefore,
in an appendix we determine the wave front of the Cherenkov
radiation using Leibmnitz's method for finding the envelope
of a family of surfaces.

{ Using the results above as a guide, we then derive the
transition rate for emission of generalized Cherenkov radia-
tion in a quantum field theoretic model allowing for recoil
of the tachyon. The assumption is made that there is no
interference of consecutive emissions. The model is that of
quantized tachyon and pi fields interacting through a par-
ticular scalar interaction. The interesting difficulties
associated with a superluminal form factor are treated in
an appendix. Beyond a certain point the two models of gen-
eralized Cherenkov radiation converge; once the basic energy
loss rate is derived the analysis proceeds the same whether
derived using the classical or quantum fields as the source.

Some considerations relevant either to general Cherenkov
radiation or to other tachyon phenomena are discussed in the

appendices.
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( The analysis of those parts of experiments which our
results affect is made in chapter V. It is shown that some
of the experimental conclusions do not reach as far as their
authors have stated. In particular, the limits presented in
the literature on the cross-sections for production of various
types of tachyons are not'justified.
Certain suggestions based on our findings are made for

further experiments designed to search for tachyons.
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Chapter II

_ In this Chapter we provide a review of the theory and of
the experimentizl searches for faster than light particles.

The theory is divided between classical considerations, largely
based on an extension of the special theory of relativity, and
quantum mechanical aspects. The predictions of Cherenkov
radiation of massless electromagnetic and gravitational fields
are briefly mentioned. Paradoxes which arise in any consider-
ation of faster than light signals are discussed. Attempts

to detect tachyons are then examined with a view to later
discussion in the light of our results.

In 1905 Einstein wrote "...velocities greater than that
of light have no possibility of existence," [?j} Lorentz. To
see why he, and afterward almost all others, believed this it
should be remembered that in the view of classical mechanics
a particle attains a velocity v after being accelerated con-
tinuously through all intervening velocities. According to

the relation between energy and velocity which Einstein obtained:

L= e (1)

[i=7%>
it would require an infinite amount of energy to accelerate a
particle to c¢c. However, with the advent of quantum mechanics we
have become accustomed to the idea of creating a particle al-
ready traveling at a given wvelocity, just as photons always

are created with velocity equal to c. Hence it was sﬁggested

-... by Bilaniuk, Deshpande and Sudarshan in 1962 in a classical
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(‘ framework and Feinberg in 1967 in a quantum framework that a

third class of particle might exist, with v always greater

than ¢. Just as ordinary particles are excluded from ever
reaching velocities equal to ¢ from below, so the tachyons

have an infinitely high energy barrier limiting them to v
always greater than c.

Relation (1) has been generalized to tachyons by speaking

of an imaginary “"proper mass" m_= b, | g0 that equation (1)

becomes:!

It might be preferable to derive this without speaking of
imaginary or “proper" quantities., We do this by starting with
{‘ the usual relatiom: (set ¢ = 1)
j . = .
E:f‘i‘w
We see from this that we always have g5/<35' and, since

p—

— _ dE _
Vo= f;? = 54;: )

=
famer

v is always less than ¢ for ordinary particles. Kf (3) is
generalized to the case of spacelike.four momentums i.e.
= o LY
E =“hf/ = Yy

where m, is still a real, positive quantity then we have

£?<'&§/ and hencet —
=4 > <

Now if we divide eguation (5) by E;and use (4), we obtains

- L
| = 2

o

¢ i}
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Hence, solvihg for E and choesing positive energy,
— = Y __
T

The possible values of E, p lie on the mass hyperboloiids,
either (3) or (5). The difference due to the change in signs
can be seen in figure 1. For ordinary particles, the restric-
tion to the upper part of the hyperboloid, i.e. positive
energy, is Lorentz invariant. However, for the hyperboloid of
the tachyon it is possible to change the sign of the energy by

a suitable lorentz transformation. The Lorentz transformation

of E iss

E'= (e- f.a)\( (6)

where
Y R
{: _ —
[i-%
and using (&) _
= g (1- =EB)Y
E = £ (/ ~ (7)
Now, since v, > ¢ we can have:
ok

for [ul<c, which is an allowable Lorentz transformation. This
causes the energy to become negative. In fact, if (8) were

an equality we would have E' = 0, and hence v, = °=, The possi-
bility of negative energies seems to open the vista of infinite
sources of energy and instability against continual emission of
tachyons by ordinary matter. However there is another diffi-
cuity associated with velocities greater than that of light.

The Lorentz transformation of a time interval associated with a
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( tachyon trajectory is: o
‘ At'= (At—“lé;i‘)f (9)
-t (1- %E)¥
_ c
Note that this quantity can also change signs under a

Lorentz transformation. This is just the observation, basic
to relativity theory, that earlier and later are not invariant
relations for events separzted by a spacelike interval. BDS
noted that the condition for the sign change of E is the same
as the sign change of A% . They have proposed a resolution of
the difficulties in terms of a "reinterpretation principle”. 1In
considering any process involving tachyon worldlines onqéinter-
prets a negative energy tachyon going backward in time, as a

( positive energy tachyon going forward in time in the opposite
direction. They characterize this as being "anti-parallel"” to
the St;ckelberg-Feynman interpretation of positrons as negative
energy electrons going backward in time. Different observers
will then have dissimilar descriptions of any process which
involves tachyons. It is conceivable, however, that experiment-
ally testable relations will transform correctly under changes
of Lorentz. frame, even though the descriptions of unobservable
intermediate processes do not exhibit manifest Lorentz covariance.

One example of these dissimilar deseriptions is given by

Feinberg. He describes two atoms: one initially excited, the
other in its ground state. In the inertial frame in which the
atoms are originally at rest the excited atom decays with

emission of a positive energy tachyon. Subsequently the tachyon
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( is absorbed by the second atomewhich then jumps into its excited
state. Each of the atoms recoils of course, because of the
emission or absorption of the tachyon. Our second observor's
1gboratory frame 1s such that the atoms appear to be moiing with
vélocity directed parallel to the vector from the initially
unexcited, to the excited atom. His wvelocity is such that
eéuation (8) is satisfied. Hence, the tachyon energy is nega-
tive and the time at which the negative energy tachyon is ab-
sorbed appears to precede the time at which it is emitted. |
Tﬁis observer reinterprets this as the following: the unexcited
mqving atom in its ground state transforms some of its kinetic
energy into a positive energy tachyon and the energy needed to
jump into an excited state. Later the positive energy téchyon

{ i§ absorbed by the other excited atom which loses its energy of

excitation, but losing kinetic energy, recoils sufficiently to
conserve energy. We will later show that this novel situation
hés an analog in a medium. Also, if the tachyon is charged.it
must be, "reinterpreted” as an antitachyon. h

, Considering the geometric Huygens congtruction for the-
angle of emission of Cherenkov radiation (. [58] Jelley), and
the fact that a particle with spacelike four momentum is.
kinematically allowed to decay into itself plus a photon,
B;laniuk. Deshpande and Sudarshan suggested that tachyons might
bé'found by searching for this radiation. This has moti?ated
both experiments and theoretical investigations intp the defailed
properties of such radiation. In addition, the possible exist-
ence of Cherenkov radiation of the gravitational field ?és
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investigated for the same reasons. Although the possibility

of Cherenkov radiation of massive fields has also been suggested
previously, it has not been followed up except in this thesis

so far as we know.

It has been observed from equation (2) that a tachyon will
speed up as its energy decreases, which will happen if the
tachyon radiates. Hence a force and the associated acceleration
can be in opposite directions. Because infiﬁite velocity and
zero energy are not Lorentz covariant notions, we conclude that
the tachyon will eventually acquire negative energy. When it
is in this state it will be reinterpreted as an incoming pesitive
energy antitachyon which annihilates the original tachyon at
the zero-energy point. The fact that this limits one’s freedom
( in speecifying the initial conditions for even classical tachyons
was pointed out by (72] Jones and others.

It will probably be an essential feature of tachyon physics
that it is impossible to contrel by external agencies the
processes of emission and absorption of tachyons: we cannot
suppose that we may choose to emit a tachyon or not as we please.
The The Cherenkov emission of gravitational radiation has been
calculated, but not in a Lorentz covariantlmanner3¢}g] Lapedes
and Jacobs)l Jones [72) did obtain a covariant form for the
energy loss due to electromagnetic Cherenkov radiation. -

There have also been arguments to the effect that there
will be no Cherenkov radiation from electrically charged tachyons.
These congsiderations are based on what is called a "Generalized
Lorentz Transformation”. Some authors attempt to establish an

almost perfect symmetry between ordinary and superluminal
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( ‘inertial frames” ( [?4] Mignani and Recami). In this hypo-
thetical superluminal world, the laws of physics arethhc same
as in our own world. As a consequende.-in addition to forbid-
ding Cherenkov radiation, they suggest the possibility that an
“electric charge ” in the tachyon inertial frame transfa?ms to
a magnetic monopole sndhr such generalized Lorentz transformations.
Quantum theories for particles having spacelike four momentum
have been investigated. [60] Tanaka, @ﬂFeinberg. [68]Arons and
Sudarshan, [¢8] Dhar and Sudarshan, [70]Ecker. The negative

mass squared (we take m real) Klein-Gordon equation har iiha.
2
(E -V - 7449‘75 =eo
. * |
has the
basic solutions 4
: T kX
{ A €
(=

where we use the time-favored Minkowski metric. Hencet;éx=édt>4‘i

and since we use units ¢ which k=c=y wsatisfies

g_: YA
to= L")
In order for the energy to be real, we :_'equire that

M /z > ‘Wll
Because of.this restriction on E, thus selecting a type 1 theory,
the sol¥dions do not form a compjlgte set on the t = 0 hyper-
surface, i.e. we cannot form a delta function SC@?;—) by super-
posing our basic solutions with t set to zero. We therefore
lack some spatial Fourier components necessary td ‘sg.‘tisfy

arbitrary initial conditions for the tachyon. f'ield. In the
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Q ‘ quantized theory we cannot obtain canonical commutation rela-
tions for the same reason.
From the incompleteness of the range of k it has been
concluded that the tachyon wave packet is nonlocalizable,
[69] Peres, [é?] Feinberg. Peres says that the obvious general-

ization of the Newton-Wigner position operator is:

S? = 2(}%55 - L "-wni{]
2

If the momentum space wave function £(k) is nonzero at k m,
then xf does not belong to the Hilbert space of square integrable
functions. Since f£(K) #ill be nonzero at k2 = m? for all
invariant functions'f but a set of measure zero (to be shown in
a moment), the operator X is not densely defined, and is there-

fore useless. In configuration space, he shows that because of

-

the absence af smalllk!<m the wave function:
23
Y&,o = f»ﬁ)[(/’“‘ 59]“@4 e

decreases very slowly (at best as r“3/2). It makes no sense to
gingle out the class of wave functions with f(k) vanishing at
%2 = m? since this class is not defined by a Lorentz invariant
condition unless f(k) is identically zero. This should be
compared wkth the assertion of Feinberg that althaugh tachyon
wave packets cannot be made to vanish outside a finite region,
they can be made to fall off with an arbitrary power of r.

We show that the latter statement , although not covariant,

. s s . 2
may be true in certain inertial frames.

—
N

The little group of the inhomogeneous Lorentz group for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

( space-like four momenta is the group S0(2,1) of rotations in

| three dimensional pseudo-Euclidean space which leaves invariant
the tachyon four momentum in the standard frame such that:

,79/'== ‘(<3; 12} q,arc)

This group consists of rotations about the tachyon velocity
(here taken to be the z direction) and Lorentz boost transform-
ations in the x-y plane. Since this group is non-compact, all
representations are infinite dimensional in the spin variable
except for the (unitary) spin 0 representation,[ES] Shirohov.

Considering the spin 0O case, Feinberglbﬁjconcludes that
the tachyon field must be quantized as Fermions, i.e. with
anti-commutators. In his theory the vacuum is.not invariant
since a Lorentz transformation adds an infinite real number to:

( the momentum operator. Feinberg's quantization scheme was
intended to get rid of the negative energies arising from
Lorentz transformations. However, Arons and Sudarshanlzé]
suggest incorporating these negative energy states into a
Fock space, but insist that the only physically meaningful
quantities are the transition amplitudes to which one applies
the"ﬂeinterpretation Principle" of BBS. Thus negative energies
are eléminated by “reinterpretation” at the end.

Dhar and SudarshanlBS]. considering spin 0 Bosons and
dealing with the negative energy states in the same way, also
consider ineractions. They conclude that the scattering ampli-
tudes may be calculated by substituting (-m2) for m? in the
usual formalism. Ecker[?d] » after discussing ,the lack of

Lorentz covariance of these quantization schemes, suggests
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( : | abandonment of the scalar property of the field operator and

| therefore of the Lagrangian formalism. Instead, he makes use of~’
methods of axiomatic field theory to construct . the Hilbert

space and define the fields. The fourth component of . his
momentum operator is positive definite and therefore again the
momentum cennot transform as a four-vector. He also points

out the difficulties in describing interactions because of the
nonlocalizability of the free tachyon field.

Because of the probable necessity (forced by the problems
of the free quantized tachyon field theory) to make all tachyons
virtual, the unitarity of a theory incorporating them is not
easy to demonstrate (or even to investigate). Boulwarel?@?
has pointed out some of these problems in a type II theory.

Morse and Feshback BB] Show that the usual Klein-Gordon

EanN

equation describes a flexible string embedded in a sheet of
rubber which provides a spring constant K. The additional
restoring force associated with the rubber makes it possible
to eliminate end suﬁports. The equation is

"L'Q{L—M /‘4"/J |

where :
c‘=7 ond /“2:;;’3 P= desplacement of string

[inear deasity

T ="Tensson of t+he S'Z“N”} j/3 = ‘el S;kr[n}
) 4

We have found this model helpful in visualizing the situation

for tachyons. In this case take K negative. Then the force
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produced by the rubber is in the direction of the displacement
Y instead of being a restoring force. The instability
inherent in the negative mass squared Klein-Gordon equation is
then made apparent. Note that such a model if of a type II
tachyon theory.

Aharanov, Komar and Susskind[Bé] have dealt with this
instability in a nonlinear model. They look at a system of
pendulums coupled by springs to their nearest neighbors. For
the. case in which the pendulums are ih the inverted position,
the continuum limit for small displacements yields the negative
mass squared equation., They show that the instability occurs
when the initial modes involve k2¢ m?, They also show t‘hat if
these exponentially growing modes are included then there exists
{f : a causal Green's function. However, if the unstable modes are
| excluded then the field cannot couple locally to & source and
the Green's function cannot be confined to the interior of
the .light cone.

The analysis of the propegation of signals by the Klein-
Gordon equation with negative mass squared was first made by
Enrenfest in 1910 for a type II theory. Further analysis
along this line has indicated that signals will travel at less
than ¢ even though

g = 3£ >
Jj = 9 P ‘
See EO]Ehrenfest, EHJSommerfeld, E9]and ﬁO]Fox.l Kuper and
Lipson, and}}@]Bers, Fox, Kuper and Lipson.

( So we can conclude that type II theories may have causal
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(; propagation and subluminal signal velocity, but at the price
of dynamical instability. Type I thesries may avoid the problem
of dynamical instability, but for them it is not even possible
to define a signal velocity and the propagation is not causal,
because of the lack of localizability in such theories.

. Although single processes of emission and absorption of
tachyons may be adequately treated by means c¢f the reinter-
pretation principle, causal loops are not so easily disposed
of. One example of such a paradox arising from signals
exceeding the speed of light, is given by Roger Newton(}@].

Two rockets, initially at rest, move with constant velocity
for a time and then come to a rest again. One should visual-
kze a Minkowski diagram for the moving and rest systems. The

( dotted lines indicate simultaneity in each system. See figure
(20 According to the usual construction of a Minkowski diagram
léj]Lorentz et al, the dotted lines are drawn parallel to the
x coordinates - for each frame. We indicate one such construc-
tion on the figure. Then, we see that a superluminal signal
from A to B arrives at a latér time as measured in the moving
coordinate system. Rocket II at point C then, as a result of
receiving the signal, comes to rest and sends another tachyon
signal to Rocket I, telling him not to send any further signals.
Because of the changing definitions of simultaneity for the
gystems, this signal arrives before point A, which initiated
the whole exchange. Hence the paradex. If the original
signal had not been sent, then the return signal would not

exist to cause the prevention of the original message. In order
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to avoid this paradox and the other problems of a free tachyon
( | field theory, we must make an S-matrix theory in which tachyons
appear only as virtual internal lines coupled to other quantum
particles, and not coupled to sources under the control of an
external agency. Then each vertex containing a tachyon is
regarded as representing an event in a stochastic process--
an event which may be interpreted either as an absorption or
an emission depending upon lorenti frame conventions, but an
event which can not be controlled. One cannot decide to send
a tachyon from A to B, and so no causality can be ascribed to
the events occurring in the Newton loop. It must be admitted
that no systematic expogsition of the Feynman rules for such a
tachyon-containing S-matrix theory has been presented; so it is
not easy to decide definitévely whether or not such a theory
also posseses irreparable flaws. In later sections we attack
this problem by considering Feynman diagrams including
tachyonic virtual lines with various other lines attached to
the tachyonic line, and argue that such attechmerts(Cherenkov
radiation) must be considered and appropriately analyzed if
many experimental searches for tachyons are to have any

reasonable theoretical basis at all.

.........
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Experiments

Motivated by the 1962 article by Bilaniuk et al, Torsten
Alvager and Peter Erman [Bj]at the Nobel Institute in Stock-
holm began an experimental investigation aimed af finding
tachyons. They used radioactive beta decay of Thulium-170 as
the possible source of electrically charged superluminal par-

ticles. From the relation
kR

Esgi: fsl + m

it is apparent that at equal values of the momentum, tachyohé ahd
ordinary particles with equal m will possessdifferent energy.
They deflected the products of the decay by means of a
magnetic field. Then a particular momentum was selected aﬁd
its energy measured by the counter in the double focussing beta
spectrometer. Although the search continued for a period of
two years, from 1963-1965, the scught after difference was not
found. It was assumed that there was no Cherenkov Radiation
by these charged tachyons. .

The first attempt to detect tachyons by means of the ex-
pected electromagnetic Ch@ﬂéﬁ%ﬁﬁ(ﬁﬁiﬁﬁ}%gr.was reported in
1968 by Alvager and Kreigler, In order to enhance the proba-
bility of detection, an electric field was used to supply
energy to any tachyons created. Thug it was hoped that the
time would be extended during which the tachyona emitted
radiation at the characteristic angle determined by the velocity
‘ according to

cose= c/v,,
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Arguments were advanced indicating that the energy lost by
<J Cherenkov radiation would equal energy gained from the field
at a terminal velocity determined by the tachyon parameters.,
The tachyons were to be prodﬁced by bombardment of lead by
gamma rays at the Princeton-Penn. accgleratorldaNo tachyons
were found, and an upper limit of 3/#5 was placed on the photo-~
production of tachyons whose charge is from .1 to 2 electran
charges,
A second search based on Cherenkov radiation(gzzlreported
the next year by Davis, Alvager and Kreisler [BQ]A The tachy-
“ons, to be produced by photons from C o°° impinging on lead,
were to pass through two of the above detectors with acceler
ating electric fields. Looking for coincident counts from the
two detectors would avoid the large number of spurious counts '
produced by corona discharge. Again the results were negative.
In addition to possible detectibility by Cherenkov radia-
tion, tachyons have spacelike four momentum and hence, negative
mass esquared. A combination of two or more tachyons however,
can have either spacelike or timelike four momentum beeauée of
the possibility of the spatial components of the momentum
canceling out. Hence, a missing mass experimqnt;involving
missing tachyons might find nesative missing mass squared, but
if two tachyons are emitted in opposite directions it wéuld be
positive. In 1970 Baltay, Feinbergz et al reported such a
missing mass experiment in which antiprotons or X~ particles
were given an opportunity to produce tachyons in a bubble
( chamber. The experimenters hoped that the experiment would not

be sensitive to unproven conjectures about the tachyon inter-
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(ﬂ action with matter. The invariant mass squared of any missing
particle is calculated through measursment of the momenta of
the observed particle in a bubble chamber by using Gonservation
of energy and momentum. It is assumed that there are no
tachyons in the initial state. The missing mass squared was
then pletted and a search was made for negative values,
Although two or more tachyons can give positive misskhm mass,
no combination of ordinary particles can give a negative missing
mass. At first there did appear to be some possibilities for
tachyonz. But when each of the cases in which negative mass
squared was re-examined, some error was found to disqualify it.
The authors concluded that the cross~section for production
of neutral tachyons was about 1,000 times less than the

{ corresponding cross-section for pions.

In 1971 Danburg et al published their findings on a
gearch for charged tachyons. They sought bubble chamber tracks
of tachyon pairs produced in the resctions

KT+P =2 N+ 27+t7
Although it was assumed that the charged particles would leave
tracks,. it was also postulated that there would be no Cherenkov
radiation. In addition, it was assumed that the tachyons
follow curved paths in the magnetic field just as ordinary
particles do. We will later compareatp;s,aggymption with ogr
analysis of tachyon trajectories. Aéﬁin‘no ﬁ;gativu nass
squared candidates were found.

In the spirit of the Generalized Lofentz Transformation,

6}4] Mignani & Recami} and a postulated symmetry bétwéen super-
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( luminal and ordinary worlds, it has been suggeated that

tachyons might possess magnetic charge ( [6‘7] Parker). An
atteinpt to find these monopoles has been made by Bartlett and
lahans [72) . A longitudinal magnetic field is used to accelerate
the monopole to a terminal velocity and the,expectﬁé;Chorenkdv
radiation is sought.

The {-M<Vgamma rays from a Co%° source did not produce any
detectable tachyon monopoles through photoproduction. The

~36 cmz'for the cross

authors set upper limits of about 10
sections in lead and water.

Danburg and Kalbfleisch [}é} looked for instances in which
protons in a bubble chamber at Brookhaven\ﬁaﬁipnal Laboratory
participated in the reaction p ~>p + 7. 5This.is kinematically

{ allowed for a moving proton. They looked for events in which |
there were no ineident particles, and yet the proton suddenly
moved (recéiled) for no apparent reason. Although they found
examples of this, on further analysis they could all be explained
in more mundane terms.

The most obvious property of tachyons, aamely their great
speed, which always exceeds that of ordinary particles, has
also bean exploited. Any tachyons which are associated with the
extensive air showers (EAS) created by high energy cosmic rays
in the atmosphere, would arrive before the slower constituents.
The fastest ordinary particles areithose with the highést energy
and have velocities virtually equal to c., The fastest tachyons

will be those with the lowest energy, and would arrive glmost

instantaneously. By triggering the counter on any signal and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

then looking at the record for up to 60 micro-seconds after-
warda; one seeks a correlation indicating that the first signal
wag the precursor of a‘shower of ordinary particles.

The first such experiment was carried out by Ramana
Murthy [71] at the Tata Institute in India. The time interval
considered was twenty microseconds. The only coincidences
found did not exceed the numbers expected due to chance,

The only positive result So far is that of Clay and Crouch
reported in Nature in March, 1974. They studied EAS which
were two orders of magnitude greater than previously reported on
by Raman Murthy. The cosmic ray showers were of energy épprox-
imately 2x1015 eV, A total of 141307 showers were analyzed.
The results show that the distribution of large pulses following
a triggering is not uniform. A:x? tegt indicates only one

-

chance out of one hundred that the data is from a uniformly
distributed population. '

Although there is a possibility of the correlatibn arising
from other sources, the authors indicate that this seems un-
likely. The production of associated particies at the source
would have to be followed by continuing association throggh the
interstellar and source magnetic fields, uhichgséému doubtful.

A subsequent study of cosmic ray extens;ze air,éhowers in

Japan has not found evidence of tachyons((?@]Tanahashi & M.F.Crouch),
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Y Chapter III
The Dynamice of a Tachyonic Source

In the absence of a coherent quantum fiefd theory or
guantum S matrix theory of interacting tachyens, we investigate
the properties to be expected from “"reasonable® assumptions.

If such particles are to be experimentally detectable, some

idea of their behaviour should be helpful in designing a success-
ful experiment. In fact, for particles whose behaviour

promises to be so novel, this information is much more important
than is ordinarily the case.

In this Chapter we extend our consideration of those
aspects of superluminal particles associated with Cherenkov

i radiation. This Chapter may be thought ef as an investigation
of Cherenkov radiation with an emphasis on the behavior of the
sourge. The next Chapter will emphasize the behavior of the
radiated field. In each case the quantum and classical aspects
will be contrasted and compared

As noted in Chapter II, BDS have pointed out many tachyonic
properties which follow from having a negative mass squared and
from employing the usual Lorentz covariant equations. In parti-

cular they look at the implications of:

EL: fxc}-— M;' c? (1)

where m, is real. In this thesis we will only use a real mass

parameter, If Vv = $c2/E, then

| <\_ E = mcf//vz/cz-d. (2)
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(, and the energy of the tachyon decreases as the velocity

| increases. As v->owe see that E -» 0. In other words, if
you push on the tachyon in thé direction of its motion it will
gain energy and slow down. The harder you push, the more it will
slow down. Furthermore, if the tachyon is losing energy through
Cherenkov radiation it will speed up.

Although this speeding up follows qualitatively from
equation (2), kt would be illuminating to see quantitatively
how the force and acceleration can be in opposite directions.

We derive an equation for the acceleration of a classical
particle under the influence of a prescribed force. The
equation is valid for both superluminal and ordinary particles.
We make no assumption about the nature of the force. In

{f particular examples the force may be produced by an electro-
magnetic field such as that in one of the experiments already
conducted, or may be produced in the reaction associated wkth

electromagnetie
Cherenkov emission ogAradiation or of a massive radiation.
We have the well known relation for the 3-velocity Vv in

terms of the three momentum p and the energy Ei

d¥ _ — _ p° (3)
L=v=T7

Taking derivatives of (3) with respect to timés
dr_d/Fe)=df e _F9E ()
At T " J2

Now use

(5)

Y
S|

.

I

nd dP _

i
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( as usual. Combining (5) and (4):
| ¥ — F & _ pC AT (6)
e = Fz ="
Combining terms and using a component natation equation (7)
becomes:
417 _ j;: - (/ — e ) (7)
ﬁ*éé‘%i 9;/%‘
or

¥Where the outer product X 3B is an operator on vectors defined
by (AB)C = X$BCE). Now use %:: equationm (3) for the second terms:
(8)

a’U—[ — -LF'U—
a4+ (g ¢ A

17 _ <F- (T- L)
re 5( <

This equation is valid for any finite velocity. If v<c the

(9)

or

acceleration is dominatedlby_the first term which is in the
direction of the force. 1f'igis perpendicular to ¥, abbreviated
FLv, (the transverse case), or if P is parallel to ¥, abbreviated
F % (the longitudinal case) (9 ) leads to the définition of the

transverse and longitudinal mass parameters:

/? — —_ Y ' — — 1
( = a7 (o8)
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(. We can generalize this definition of directional mass and define
the symmetric mass matrix:
® : SPRU 11
(7ﬂ" - = (ig--_' ~%;‘9/) (11)
t.;. - E 62 R

To set the stage for the superluminal case we recall that the
relativistic correcti&n which gives rise to a component of
acceleratioﬁ'not collinear with the foree is responsible for

7 seconds of arc per century of the precession of the perihelion
of Mercury (1/6 of the total non-Newtonian precession). As is
well known there ape coreections to the electron orbits in
atoma due to.this same cause. The point is that the tachyonic
effect to be discussed is not completely unprecedented. As v

{: approaches c¢ the noncollinear component becomes much more

important.

For the case v)>c we congider first the transverse and
longitudinal cases, ‘

a) FLV - In this case F‘¥ = 0 and equation (9) shows
us that an attractive force or repulsivé force cause the usual
acceleration. Hence a tachyon can ha&e circular orbits in any
attractive central ferce field.

b) F /T - In this case, equation (9) and (11) show us
that the effective inertial mass is negative. The force and
acceleration are in opposite directiens. A potemtial which
is attractive for transverse motions will be repulsive for
longitudinal motiong§, and vice versa.

For arbitrary angles between F and ¥ Glﬁck[%?] has calcu-
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{ ~ lated orbits for a charged tachyon moving about an electric
charge under the condition that it is arbitrari;y prohibited
from emitting Cherenkov radiation. He concludea that circular
orbits are the only bound solution. In appendix (H) we
calculate the trajectory of a classical non-radiating tachyon
moving in a constant #lectric or magnetic field. But we remark
that there appears to be little justification for forbidding
Cherenkov radiation; the analogous prohibition for tarhyons
would forbid electromagnetic self-energy corrections (and thus
drastically alter the Lamb shift).

We assert that the calculation of any trajectory of a
charged tachyon in an electromagnetic field which dees not
include the effects of the radiation reaction force assocliated

( with Cherenkov radiation is inconsistent, and probably a poor
approximation. .

It is apparent that equation (8) will usually give a
component of acceleration along § (or ¥ for.a central force)
and a component along v. At some point on a trajectory the
central parteof the acceleration will change from attractive to
repulsive (or vice versa) as a tachyon leaves the vicinity of a
static charge. Figure (3 ) shows the relative magnitude of the
two components of acceleration of a tachyon 7 moving in a static
Coulomd field produced by a charge of like sign. The full

acceleration is, from (9)

47 _ < 7 (T-EF) 12
e T <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

pL
A L
b
e
— - 2 Q 2 e \
N Te
N J
\ .
AN s
N "'3
N ey
Stv
. N N T4 /,9/

/” Projection 6f v component of
agceleration along T cancels
e F comp. when cos. @ = = c/v,

o
e : o
y ‘Relative Components of F.»7' in a Central Potential

a’,

ACCELERATION OF TACHYON

Figure 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

(, The accelaration in the radial direction is seen to change sign
when (see construction in figure (3)) v
cos @ = = e/v, | (13)

The solution using the plus sign repregents the usual Cherenkov
radiation angle. We see that when the static source lies within
the Cherenkev cone of the tachyon, the tachyon experiences an
acceleration towards the static charge instead of the naively

3
anticipated repulsion.

——

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24"

We next turn to a consideration of the Lorentz transform-
(. ation properties of the kinematical and dynamical quantities
associated with the classical motion of a point particle
along a tachyonic trajectory. Consider two neighboring
points on such a world line, with coordinates (x,y,z,t) and
(xwax, y+ay, z+az, t+4£).

To focus attention on the most interesting aspects of
the. situation, let us confine ourselves to the case in which
y=2=0 for all points on the trajectory, and let us consider
only those Lorentz transformations W®hichihabninim this
condition (y'=z'=0), that is, consider only Lorentz boosts.

The usual boost transformation in the x-t plane when

applied to (A¢; 0, 0, A%) gives

13

L, b
<\ loxst %2
or
Ax'= AK[/~%7~)7Q R wiTh vz A¥ (/5)

Assuming that the tachyon velocity v,>c, we see that there is
no Lorentz boost transformation which changes the sign of AX
since u<c. For ordinary particles a change of sign of AX
occurs when udv and gives rise to a reversal in the direction
of the velocity.

The Lorentz boost transformation of aA+¢ is:

A= (44~ TAX )y (0

<

= a(l - L%y, (17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

Now a transformation velocity u such that
(' oV > [18)
will change the sign of t. It will also change the sign of
the fourth component all of four-vectors tangent to the‘tachy-
onic world-line, in particular, the energy-momentum four-
vector (BDQJBi]Feinberg). Note that the invariance of the
sign of (/5) also applies to the space components of all
four-vectors tangent to the tachyonic world line. For
example, a transformation satisfying (/%) and changing the
sign ofat and E will not change the sigp of the momentum p,
The tachyon velbcity changes sign because of the sign
change of at, not because of the sign change ofax; an
ordinary particle experiences velocity reversal under appro-
priate boosts for the gpposite” reason. After the boost the
energy is not only negative, but the velocity and momentum
point in. opposite directions.
. We see then that the "reinterpretation principle* will
get the velocity and momentum in the same direction.q
We wish to consider a tachyonic field which asymptotic-
ally moves freely. Assume it is localizable in the sense
that it should be possible to make wave packets which move
along classical point tachyon trajectories. For the moment
we ignore the difficulties in obtaining such localizability
in order to investigate some consequences. that woul@ fo;low
from the existence of such states. The matrix elements of
the current operator associated with such localizable
; states should yield a four=zvector ngJZ ©, © ) proportional

to the tachyonic tangent vector (at,4x, o,0),
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But:

‘/p/ — (ijo-— f?~€Z)‘X; (1

T = (’T“fg>\(‘x (>
we expect that
T =P

iy [p] = opizm Ip1 o KT

In this case the tachyon is conventionally reinterpreted as

SO

an antitachyon of opposite charge, travelling in the direction
opposite to the initial wedec €y,
If charge is to be conserved globally we must either

consider simulténeously the source and sink of the tachyon
or the flow through thé boundary of the volume we are
considering. In figure (4) we consider one of the problems
encountered when one attempts to consider an asymptotically
free charged tachyon. We see that the reversal of sign of
the tachyon charge density under a Lorentz bopst transform-
ation does notdestroy the scalar nature of the total charge

_jJ%UP , when the tachyo! 4 Pears in an intermediate
state in figure(uﬂ; However I)Q%DP is not Lorentz invariant
when the tachyon is asymptotically free, gigure(hb). This is
because too much charge flows through the spatial boundaries

at infinity. This is also seen by Gonsidering the charge:

t'f¢*<5f #d7x
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( Inertial frame (1) (Lorentz transformatkon to) Frame (2) !
Initial ;e sink (or) sink souree
State — — > LIV
s & <= I = o ____
Inter-~
mediate - ®-~ O o < +
Final
State —_ -+ — +
Net charge Net charge
always zero. always zero.

Total charge is invariant.

Tachyon in intermediate states only.

frame (1) frame (2)

always zero. always -1.

7 in "Out"” fie%d 7 in "In" field
| |
Initiay  SUECE i sink '
nitia - |
State O | © <2,
!
!
e e L e L e e e e e
| =T
z |
Final i |
State - ®> - i
T !
. | :
|
Net charge | Net charge |
' (
f

Total charge is not invariant.

Tachyon in "In” or "Out" States depending on frame.

Figure 4.
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<- resulting from a free tachyon wave packet:

B0 [sth sav) AL e

X

we find:
Q = /J:O e RO JFCE 9/ )

where
Key= Josm® | e@= 55
and d.0 is the element of solid angle.

The reversal of the charge is manifested by the sign
function (not invariant for tachyons) €() within the integral.
The usual proof of the invariance of & relies on both current
conservation , ~?5M;§42°) and discarding an integral at

{ spatial, infinity. We see that the former is still brue while
. the latter is no longer justified.

We note that when v,=%«and E =0 the tachyon is a pure
current, i.e. P =° and J is finite, [(19)and (20)]

The velocity of both subluminal and superluminal parti-
cles can change direction under certain Lorentz boostS. The
situation is completely different for the acceleration three-
vector. Consider a tachyon emitting Cherenkov radiation and
speeding up as it loses energy. In a boosted inertial frame
in,which the velocity is reversed, the direction of "speeding
up"” will be along the new velocity if the rule that Cherenkov
radiation reaction causes an increase of speed is Lorentz
invariant, as we expect it to be. Therefpore, the acceleration

( is reversed. For ordinary particles, the acceleration does

not reverse under Lorentz boost transformationSin the
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appropriate x-t plane, (it clearly does reverse under
rotational Lorentz transformations).

‘To show that this picture of Lorentz boosted acceleration
reversal (derived on the basis of assumptions concerning
Cherenkov effects) is correct, we derive the transform of the
acceleration directly. For simplicity we continue to consider
u to be along v,. First, divide equation (15) by equation (17)

to obtain the usual collinear velocity addition equation:

—/_ U= & :
VT T ar (=)
Take derivatives of both sides with respect to t.
d! é}f( , & )
42 dt /= + ct di (?.z)
- <—~ uv)?
/ <t
.y
uv 4
= %(/"”‘%ﬁe c S
U\*
(/- &

Now use (17) to replace dt on the left hand side and obtain:

T
S ~ _
%l’ = dv; (/ _ L( 1/';-) | (Z y

Thus we see directly from this transformation formula for
acceleration that the condition for reversal)(18))is the
same as for the sign change of Est and y. We also see that
for ordinary particles where v<c, the acceleration never
changes sign under such boosts. Note that the acceleration
of a nonradiating tachyon in a constant electric field

( (described in apperddix H) has the Lorentz transformation

preperties just derived.
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Our next step is to analyze the equation obtained by
applying conservation of energy and momentum to the process
of Cherenkov radiation. Our analysis will be patterned after
that given by Einstein for ordinary radiatbn ([127Einstein).
We assume that there is no interference of successive
emissions. The calculation is inherently quantum mechanical,
i.e. the energy and momentum are radiated in discrete quanta.
We take the radiation process to be stochastic; there will
be a probability \”/(73f;1§r) of emission during an
interval dt by a tachyon with initial four-momentum f}f—
of a -quantum having momentum four-vector fﬁi The prob-
ability per unit time VV(T;;ﬁ:) will be independent of
the previous history of the tachyonic source, but it may

depend on the density of7Zquanta in the vicinity of the

. TN

tachyon (possibility of induced emission), We shall require
""" that W +transform appropriately under change of inertial
reference frame so that the Cherenkov process will be
invariantly described. There will be a finite recoil of
the tachyon with each emission, a recoil we compute using
conservation of four-momentum and the condition that all
particles involved maintain the appropriate mass-shell
condition. The first result will be a determination of the
angles and energies with which the quanta are emitted. This
calculation is complementary to that th the next section,
which gives the average recoil rate of the tachyen as a
function of its velocity.

( ~ In this section we derive the main result. for the -
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(\“ Cherenkov emission of 77-particles having a positive mass-
squared. We consider more general kinematic situations in
appendix A.
Conservation of energy and momentum during the emission

of a -7 particle by a tachyon 7T says that:

T 7~/ ‘
fh =R (29

/
where 7%Y is the four-momentum of the tachyon after the

emission process is completed., Therefore:s

(ﬁf‘f@z: 43/“77&» o)

~ T : ' o
v fr =2 70/9)/‘ OB = e e (27

and

Now using the facts that the tachyon and the 77 are on the mass
shell before and after the emmssion process:

L

- ?,’_ ‘T/ T/;~‘ o
B 7 A (x8)
(=)

and

7T b
AL tfr =77
in (27).

Hence:

7;3;13/:’7: g ﬁ‘y

2.

Now write out the left hand side

At

EF £ -Apr=7F 30
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HE

¢ y ’ -— — Cl
¢ and divide by /f%/éﬁm/ and use the relation ‘”irfig'
We obtain the angle @ at which the magsive 77 particle is

emitted as a function of the 77 parameters:

Con® = & - 27 . (5%)
For the case “;=c (which implies v, =c) this relation yields
the usual Cherenkov angle for electromagnetic radiation:
Cor® =
Note that for the case m,#0 there is a range of values

of 6 for any given value of v.. We analyze equation (32) in
detail in the next Chapter. Also, in appendix A, we derive ~
a generalization of (32) for the case in which the internal
state of the tachyon is allowed to change.

{, Note that for electromagnetic Cherenkov radiation in a

medium we havet

//_)/:’r__? 70/3’___ ﬁ(‘d/ ’.’_:L) and n>/

" L ﬁlc\;l(/‘n?>< o
N =
T f/‘ fﬁ Code. /,S’PQCQlle

f 144

Then equation (32) becomes:

<™ ot {/-— #) (33)

Cor® = VN T ae /'Fr/
This agrees with the usual quantum correftion to massless
Cherenkov radiation ((58]Jelley). Note that the correction

term dis_appears as n-1 or k—o.

We now turn to a study of the average rate at which a
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tachyonlc source obeying our stochastic model will lose

S

energy through the emission of Cherenkov radiation. We

note first that a tachyon travelling in a vacuum and emitting
Cherenkov radiation possesses no preferred reference frame,
except possibly one in which v, = ¢, Whatever the form of the
coupling to the field which is Cherenkov radiated and whether
or not this field is massive or massless, Lorentz covariance
imposes restrictions on the rate of energy loss and on the
equations of motion. ,

We assume that during Cherenkov radiation the "internal"
state of the tachyon does not change. As it radiated and
loses kinetic energy, the tachyon speeds up. However, a
Lorentz boost transformation in the direction of the instant-

( aneous tachyon velocity v,., will also change the tachyon
velocity. Let the average energy radiated during the time
interval dt, with the original tachyon velocity v, be given
by dE ='T?§)dt. As time progresses v will increase as a
result of the energy loss; and its direction will change as -
a result of the retoil calculated in the last section.
Therefore'T}G(t)) will be a function of time.  We have assumed
thatﬂ"r) dependg ,:gnly on the magnitude but 2i$s on the direction —
of V,. Because of the constantly changing tachyon direction
the possibility exists that the tachyon may absorb a previcusly
emitted 7 or be induced to emit further 774 by it. We
consider the probability of this to be negligible.

We assume that the dependence of | (¥) on [¥/ can be deduced

from the Lorentz covariance of the description .of the Cherenkov
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radiation process.

The usual form for the energy loss of a particle
emitting electromagnetic radiation via the Cherenkov effect
is (B8lJelley, [62]Jackson)s

é./—f:_éifwfh/mjéw G

Ax c* ,

where :
Fz% A= (ndex o F refract/on
In a medium where a fast electron exceeds the phase velocity
of light the range of integration is over those frequencies
such that /32 n'e) >| | pAlviger and Kreisler (B8]AK),
Bartlett and Lahana[?gz and Davis, Alviger and Kreisler
(f9]DAK) based their searches for tachyons on this equation
with 57/ as the cutoff or upper limit for the, integration.
This equation is inadequate for tachyons in a yacuum for two
reasons:

a) dE/dx is not a Lorentz covariant function of ¥.

b) a positive range of emergies for the tachyon will
contain negative energies after a Lorentz transformation,
invalidating the rationale behind the frequency cutoff.

In fact, Lorentz covariance and dimensional considerations
will make it apparent that the tachyon theory must provide
an additional parametér, e.8. My or a kmax’ to, serve as a
scaling factor or cutoff in order for the Cherenkov radiation

to be finite.
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' We now explore our averaged stochastic model in quanti-
tative detail. The tachyon 7 is assumed to travel a certain
distance Ar, on the average between successive emissions of

T -particles. o r begins after the last 71‘ emission and
ends after the next one. A r can depend on the speed of the
tachyon. We suppose that the tachyon emits, on the average,
a quantity AE of energy with each 7 -emission. A E_can
depend on v., as can the average time between emissions,

satisfying sr=yat. The dimaction of aT will be parallel to

the instantaneous ve i

"..gth A% in figure (5).

' \: this segment is
N |

o T/Zl") exists

Congider a s§

The tachyon fonyfuNae

denoted »fﬁi)

i after the next L g these four momenta

with the points mN | | feure (5). HE = E;ﬁ)—é;f/)
i.e. the energy loss § -*‘riis the loss at the
second emission.

Now look at this same segment of the tachyon path in a
frame boosted by velocity u which is parallel to AT and there-

fore to v, . We haves

) = ([‘;(l) - f"(’) a)h/u (35)
E;l*) = (E,r(a) - 73,,(@‘ -I)a( | (36)

Subtracting (3%) from (36)

f y / e (- AW E)'){\ (37)
1 pe) = ol = (b (p-FF)
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' We now explore our averaged stochastic model in quanti-
tative detail. The tachyon 7 is assumed to travel a certain
distance Ar, on the average between successive emissions of

T -particles. & r begins after the last o emission and
ends after the next one. A r can depend on the speed of the
tachyon. We suppose that the tachyon emits, on the average,
a quantity AE of energy with each 7 -emission. A E can
depend on V., as can the average time between emissions,
satisfying sr=yat. The direction of aT will be parallel to
the instantaneous velocity of the tachyon.

Consider a segment of the tachyon path ar in figure (5).
The tachyon fomr-momentum associated with this segment is

/4 .
denoted f"ﬁf) . The tachyon four-momentum : -A® exists

o

after the-nrfﬁ: Tr -emission. We associate these four momenta
with the points marked (1) and (2) in figure (5). AF = E;,(a)—é;(/)
i.e. the energy loss associated with or is the loss at the
second emission.

Now look at this same segment of the tachyon path in a

frame boosted by velocity u which is parallel to aAF and there-

fore to v, . We have: |
E;:(,) _— (E;,(l) — f?_(l) 'a)h/t« (35)
E;fz) = (E,;a) - f,,fv “T)z( y (36)

Subtracting (35) from (36)

¢ ' G- An) K (37)
[ AET’.: l:,?é/v_E;{,) = (A{;r .,6019.)—/1)_(/)) u)')f\
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%I, By conservation of four-momentum
— oy — A (38)
()
Hence
- = (39)
<;363~ 7Lf%r'c5>2(’
Now by definition u is parallel to p,(1) so we can write:
n . w = 0){‘/\/
Using equation (31) for .7%}~f#b
o R = (B, 5 - 7y )]
-t = (Erby - 2o UL
- HP~
. and now note that = AL, o, £, N
i Therefore [P U7
n . — ~ (40)
7%7” W= ~ Ac, [if P, [/
U;., zlﬁ/
Then (39) becomes
(41)

S ﬁT/ o /—\/
Ae_ = ag, (/- =L

For electromagnetic Cherenkov radiation where m_ = 0 we have:

l - pe (11
re'= pe (1 %)ﬂ

This will also be a good approximation for nonzero m_ when the

last term in (41) can be neglected, i.e. whens

v 2z *oElT
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’ This can also be written .
E Ag, »> Im
For high enough tachyon velocity where E_-»0 this cannot be
gsatisfied. However, in a frame in which the tachyon energy
is great enough it will be satisfied éince AE, is certainly
greater than m_.
Assuming therefore that either we are dealing with
electromagnetic Cherenkov radiation or the tachyon energy is

sufficiently great, we have:

(42)
/
_ A
A =o€, (/- ""Fr) A
The Lorentz transform of the time interval in which the
{ energy is radiated is:
ad'= (o= ALE) . (43)
= A‘i‘(/- ﬁ_,“>3{~
C’L

Hence combining (42) and (43)
r w ,
As,  pe, <:"7E;) %

e U S

'Y
Now Ui ¥, by definition,and using equation (21) for the composi-

tion of collinear velocities, we obtains
/

AET — AE ar /
AL T TAF TS T
or at At v
4
¢ . BE
| RE, L = = (44)
( At Vo T
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We thus see that a Lorentz boost transformation in the

B o5

instantaneous V, direction leaves =7 - invariant.
However, a boost iransformation & which is perpendicular to
= only - - .
——— 7Vz will not, change Vv, but will change S . This

can be seen by dividing equation (39) by (43) for &_1 v .

/Af’ Y (lo"fc‘;’")fw

Now

—

"tf‘,r,-ur

M
0

but
,/?77__-5— # o ¢~ ﬂenerml'

However when we average over the possible directiomnsof 7%»

f' we have by azimuthal symmetry.
| — Af AL
fro>=0 = 2o =Gy
From now on we assume that this average has been performed. o

. / .
Hence for arbitrary boosts: (usﬂn} Ve # Yy (n thelasi‘e?urbsn)

AEr __[__> <A£—f L
Y A

8o for simplicity we will henceforth oniy:consider‘5005f5 TR
¢ which:
Fo (45)

dE6 (0 _
d+ U

It is independent of the instantaneous tachyon velocity for these boosts.
This equation is exact for electromagnetic Cherenkov
radiation with no restriction on the fact that the direction

of ¥, will perform a random walk because of the recoil. It
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will be of little use because of this random walk. Equation
(45) will be valid for each individual segment of the tachyon
path. The constant on the right hand side of equation (45) has
only been shown to be a constant under Lorentz boosts parallel
to the instantaneous tachyon velocity. If the velocitis of
these segments of path are not pprallel to a 3mren direction

then there is no reason to conclude that this is the same

dE _L
a4t Vr

equals the same constant for a finite portion of the ta¢hy6n

constant for each segment. In order to conclude that

ﬁorld line under a group of unidirectional boosts we assume
that the direction of the tachyon velocity is approximately
a constant.

( We see no justification for believing this to be Valig
for very low tachyon énergies. When the tachyon energy is
higher and the momentum correspondingly great then we assume
that there exists a frame of reference in which the history
of the average velocity of a tachyon emitting Cherenkov
;adiation is unidirectional. Since the magnitude of the
tachyon velocity will not be a constant, such a history cannot
be supposed to hold in every inertial frames: Lorentz boosting in
a direction perpendicular to v will yield a velocity history
which is not unidirectional. The existence of a frame in which
v is rectilinear (at least for a time) permiss us to say that

(ﬁE/dQ#:is a constant for boosts parallel to ¥ This result
n A
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&
wags also independentiy found by Jones ﬁz}whoAderived it with

#~

the limitation that there must exist an inertial frame in
which the motion is rectilinear. For the case in which a
massive field is being Cherenkov radiated the equation is onQY
valid when the tachyon energy is sufficiently great.

Since an increment of distance along the tachyon path
is d¢ = v, dt; dE,/d¥ is invariant under Lorentz boosts. But
we require dE/d¢ to be a function of v, only, and the boosts
change v, so dE;/d® is the same number for all values of V.

in the history of the ‘tachyon: i.e. it is a constant in time.

wln

S‘,.é = (;5—;‘/27('_‘ (L;é)
d ¥

Prom equation (46) and the expression for energy in

A4

terms of velocity we have:

ey

pra \//wr ‘.FT

where f is a constant characterizing the Cherenkov radiation

process. Therefores

~ 7y rdf — — 7(:1}”—
(V7‘L—/’/L

Now use the expression for proper distance and integrate:

(1) = Ma)= ("= < (Z-DEY"

cl"f_ —_— ./.‘ﬁj - ’Fs
) /f -1 c(f e

( Recognize that JC«ER. w= —(K*D dUW  and let g = -f/mr:2

Therefores . - . __‘¥
ety =-T.85= g5

—
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{7;:r C,CLEtA~9/3
CJZELB_ ~—~lsf%£; cJ$<ly»A£}S

C/ )" Jeeb-1"

Integrate now and choose the origin appropriately:

¥ is the distance along the tachyon trajectory, tH¢Sa recti-

linear distance. Also

= JSM}S

set t0 =0
Hence
c?‘*:-—-‘—,ccu(gs
7
Therefore

¢F1%3-1c2' ::2}—t

We have seen that a properly covariani energy loss rule
for a tachyon emitiing Cherenkov radiation leads'to a kind of
hyperbolic motion, but hyperbolic motion with v >c. For the
usual hyperbolic motion one has (see figure 6a).

xl— c? 'Z'l -~ }

But in (47) effectively the space and time parameters are

-2

interchanged. Moreover, equation (47) is based on (46) which,
for Cherenkov radiation of a massive field,we have derived
only for high energy tachyons. Even for electromagnetic

Cherenkov radiation the presence of recoil means that the
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Parameter X measured the distance along the tachyon trajectory
' @A ly:-iwAent.-:bt.w’s:zi&'—smee.r. Hence, figure 6(b) should be .

viewed as indicating the progress of a tachyon under uniform

acceleration jadish-an bsfor Eavia @ o, rote uhok e

s e
Eo

wy v raee S e Ywenenn 38 N e T T T T ROV SEPVNE. SR TN
NI R : [ PO TR A S R ::.‘t\,al...‘,g,,;;j-:: 1,1% ek Yl Wit e

alamat Tl i

It is apparent that as the tachyon loses. energy through
radiation its energy falls to zero. It would not be Lorentz
covariant to require that the tachyon be absorbed by normal
material before E reaches zero, so we must deal with the
continuation of the tachyonic motion into the E £0 region.
The motion in the E <0 region can be “reinterpreted" as the
motion of an incoming antitachyon which then annihilates the
original tachyon. Alternatively, we may choose to allow

{ tachyons to move so that dt/dx<0 with A .an affiﬁe parameter
on the tachyon world line (see, for instance,.the equation
preceding (47)).

For consistency it seems reasonable to ask that there be
a source for the incoming 7. There will then always exist
another reference frame in which the tachyon would never fall
below zero energy and would be destroyed at the second “source®,.

Figure (7) shows a Minkowski diagram with three inertial
frames., In (x,t) the tachyon is emitted at t = 0 and absorbed
at a later time iy; after undergoing Cherenkoy radiation. 1In
(x,t) a tachyon is created at t = o and another tachyon is
created at an earlier time 't; . The two tachyons annihilate
at-a time . which is later than both t = 0 and %g. In the

"
frame (x“,t") a tachyon is created at #; and .Cherenkov
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radiates until it is absorbed &t t = 0. Thus different

observors may give quite different accounts of the same
., , .
process.,

P

'We see that for tachyons which can emit Cherenkov
radiation we do not have the freedom to specify arbitrarily
the creation of just one tachyon. For consistency we can
only. specify the complete tachyon path including the events
associated with its endpoints, events which are inherently
quantum mechanical and not under the control of external
agencies.

3 Because of the difficulties inherent in discussing the
trajectory of any quantum mechanical object and particularly
that of a tachyon, we give an alternate derivatipn of the
energy loss equation by examining the history of the tachyon
in momentum space. We make the same assumptions as before,
namely, that the energy léss associated with Cherenkov radia-
tion at any instant depends only on $ _and E at that instant.
We @ l:$@ have to assume that in the observor's frame the
motion is rectilinear.

.Since there is no preferred reference frame for the
tachyon, we expect the energy loss equation to be expresesible
in a Lorentz covariant way. We expect that there is some way
of saying that the "rate” at which “enérgy“ is radiated is a

S constant, independent of f»-and t.
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During a given interval of time the?comenent of a
tachyon wave packet with energy and momentum (Ei,ﬁl) radiates
an amount of energy AE and momentum ap and moves to point
(Ez.;z) which is constrained to remain on the mass hyperboloid.

The invariant distance in four-momentum space is:
ir 8
(as))" =(g) - kap

The lapse of invariant proper distance which is associated with
this move along the mass hyperboloid is ds. An invariant
statement of the constancy of motion along the trajectory in

momentum space per unit proper distance is:

{LSSE = ¢ with fa consTert
J

or
ds
d =

n

_ [(“5)- (] Hp/
ds

Now use the standard expression for group velocity

de

—

e _ uT
d 2

|

-

and for proper distance and time use the relation (ef. ds*= Jmf-éﬁf7

Js-:c ZZ_*/ Jf

ds. Ml Wl g
G-y A2 d+¢

We define a phenomenological distance along the tachyon

Therefore

path in terms of vg and dt, i.e. d X = dt .
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. Then we also finds

é_ — 2 /t
ds. _ f/'*( dé’)] JE e ~f
a9 \/;Z_‘?ﬂ 4% d%K

The tachyon loses a constant amount of energy per unit path

length and a constant amount of momentum per unit time; the

magnitude of the force of radiation reaction is constant,

independent of tachyon speed wiro+and invariant under 7

In order to proceed further with the analysis of the
effect of Cherenkov emission 4n tachyon mdtion we need to
evaluate the parameter f. Let us first look at the electro-

5{ magnetic Cherenkov effect. Then we suppose that f can depend

only upon the following dimensional parameters: :=g?c_)cz
7,

eL

and c. Then f =‘f3f;3 ' with/@ a dimensionless parameter,
probably of the order of unity.

In a covariant model without arbitrary cutoff factors
we would find that /3 is given by a divergent integral.
However we may regard the Cherenkov reaction force as the '
tachyon analog of the virtual radiative reaction in quantum
electrodynamics, a virtual reaction which gives divergent
contributions to the electron mass ([70]Cawley). In QED a
renormalization procedure is invoked, which renders the electron
mass .finite but uncalculable., We may similarly replace the
divergent f by a finite one, but argue that the numerical

value is not calculable, since there will always be sufficiently
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many free parameters in our renormalized cutoff scheme to
allow any value of (f). It ks reasonable to suppose, however,
that the remormalized /3 is of the order of unity. Jones [72]
has calculated the electromagnetic Cherenkov radiation from
a deformable "sphere" and obtained a quite similar reshlt, if
the Compton wavelength is interpreted as the radius of the
"sphere”, in whichle is of order unity.

If we use the noncovariant expression éf equation (34)
of Alviager and Kreisler in the limit as v->c or E>*(where it
should be less objectionable because the range of integration

is infinite) we finds

/ZI”‘JE__ __§_t_ (49)
dx T T =2 x5

— OO
i Pnrd

Our proof of the constancy of dE/dx says that this expression
should be valid for all v if it's valid for Vrad¢l So we have
/3=’i in the AK medel, based on a point electron with a
cutoff E_ .

To get some idea of the rate of loss associated with
Cherenkov radiation we substitute into dE/dx the parameters

for an electron of charge Ze. We obtain approximately:

d,E/ =~ 2% 07 Mev
dx Jy [

Hence the range will be of order of magnitude 107 cm. if the
tachyon has an energy o?&MEV. The concept of the Cherenkov
range for a tachyon is not well defined or unambiguaus.

Here, we assume the tachyon is absorbed before it acquires a

negative energy with a magnitude far greater than the initial
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| 1 MBV.

ﬁ We are looking at the tachyon world-line segment o a
fame in which both the energy changes associated with ends of
the tachyon line are of the order of 1 Mev or less. There
are other frames for which this energy condition is violated
for the very same tachyon trajectorys in such frames the
range may be much greater than the “symmetrical®™ range

defined above.
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g: Chapter IV

The Field Emitted
During a Generalized Cherenkov Process

In 1937 P. A. Cherenkov extensively studied the radia-
tion now known by his name. (see [33] Jelley for a complete
list of references) This radiation is emitted by an electri-
cally charged particle travelling with a velocity which
exceeds the phase velocity of light in the medium. It can be
viewed as a cooperative phenomenon which results from the
écceleration of, and consequent radiation by the atomic
electrons in the medium, [82] Jackson.

This. type of radiation was previously investigated in

, [39] [42] [o4]
pre-relativity days by,Thomson,,Heaviside and, Sommerfeld.

(,-J}-'s‘

Not knowing that he was not supposed to consider particles
exceeding the velocity of light in a vacuum, in 1904
Sommerfeld .calculated the properties of the radiation from
various charge configurations moving with a constant v
greater than c, .

| Perhaps the simplest way in which Cherenkov radiation
is understood is as a shock wave'like the sonic boom of a
jet. For v greater than c¢ the spherically propagating field
interferes with itself constructively, forming a radiation
field travelling at an angle with respect to v defined by
cos 6=c/v (See figure (8 ))

To calculate the Cherenkov angle we may determine the

! two retarded positions of the charge contributing fields
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which add constructively on the Cherenkov cone. Since
irdinary Cherenkov radiation may be interpreted as a collective
phenomenon of the medium and no such interpretation is possible
for a vacuum, some investigators reject the possibility of a
Cherenkov radiation in a vacuum, given that there might exist
charged tachyons.

Because of the simplicity of the geometric construction
which’helps one to understand the formation of the shock
front for electromagnetic Cherenkov radiation, others fail to
consider the possibility of Cherenkov radiation of fields
having massive quanta. L

In the following we investigate the properties of general-

ized Cherenkov radiation of a field with massive quanta which

we call “"pi" particles.

We wish to gain a generally valid understanding of the
phenomenon as far as possible unrestricted by any assumptions
associated with a particular model., Later we will particularize
to one model for definiteness. We first consider how it is
possible for a generalized charge, static in its "rest frame”,
undergoing uniform rectilinear motion, to generate excitations
in the field to which it couples. For the case of the massless
field the formation of the shock wave follows the geometric
canstruction alluded to above. For a massive field the situa-
tion is more confusing. Seemingly it is different in two ways.
First of all, the short range of the field makes us question
the geometric approach. And generally the fact that the pi mass
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g{: is not ero means that the dispersion relation 6 vs. & for
pi waves is nonlinear, giving a variable phase velocity and

a variable group velocity for the pi-waves., It is not clear

how pi-waves of different k will constructively interfere to

produce a retarded field attached to the superluminal source.
Compare the retarded Green's functions for a massless

field where the retardation is éasy to see:
o SC)or) — S % [=¢t)
AT = 477 [ %
with the corresponding massive Green'’s function (for x2 smaller
x ¢ o
w L o
S je(x)

The 8(x2) function says that no signals exceed the speed of

than the Compton wavelength)

5z [$8) 4+ 66 (5 +

7

light. . However, all v<c are apparently represented.

Leaving the geometric constructive interference approach,
which is not easily visualized in the massive field case, we
seek further enlightenment in the Fourlier transform picture,
i.e. in momehtum space. | |

In order to see what modes of the massive field a particle
with constant velocity can couple to, we consider the simplest
gituation. A point particle with charge g is adiabatically

switched on and then off.
~ ot

'/D‘(Fﬁ):? S(Fvd e

(1)

Teking the Fourier transform: o ‘Q;_ ; —uz‘)

_ //; (/é_z) w) — J::’Of 4?”/’ (F/ f)eo‘t (2)
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@ We obtain: ,a</~£~/+(' vt ‘(\J:.ﬁ/\

f(lw} "gf‘“ e
;T Ey t =i ok j

[ oe—i@“*”]

Hence, letting « go to zero:

-/)(_/k’j w) = 27/‘; g(“)’//;v:) (3)

For the Fourier components of /3 which couple to real quanta

of the "pi® field > .and A& must satisfys
{ T 2 LA ?
( I , @

We set % =¢=1( , although sometimes the factors of c are
reinstated where deemed helpful.
Hence we might have massive Cherenkov radiation when the ne12¢re
Fourier components of the source, satisfying the relation
L= -7 (5)
match the modes of the field (equationé).
Combining these two equations we find:

el A = () (6)
= L cn8)

Solving for ks
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e S (7)

’V::c"‘}.oi/

[~
It is seen that the denominator must be imaginary unless the

velocity of the source, VT: is greater than ¢, in particular:
2 ]
A Cr © (8)
T T > I |
C
Looking again at the delta function above, where ¢J , k
satisfy equation (5) and using the well known relation for a

free particle

we find thats
Vo Ve / (9)
C'l

We solve for cos 6, the cosine of the angle between the velocity
of the source and the direction of the emitted generaligzed
Cherenkov radiation:

. = (10)

This reduces to the usual result for electromagnetic Cherenkov
radiation when we take v, =c (and of course m=0)
cos 0= c/v,

Note that for electromagnetic Cherenkov radiation there
is only one angle which satisfies the conditions because the
photon can have only one velocity in equation (7) or equation
(/) .

However, for the massive field v, can take on a range of
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values, and so also can @. (figure (38 )) From equation (3) —

=

we see that k is real for & lying between 0 and cosféé R
the latter being the usual electromagnetic Cherenkov angle.
This corresponds to allowing the velocity of emitted 17 ’s
to range from C;Q;,to c. For a particle satisfying the
Klein-Gordon equation 1;5““'%;sz:cf

Hence, the 77~ emitted in the forward direction by the
tachyon source has group velocity equal to the tachyon phase

velocity and the minimum {EY satisfying equation (7

=
e

Combining equations (7) and (/o) gives the usual result
for the momentum of the 77 . We also easily see that

{ <
A .//{ .= yy]?; ey ©
7 s fU'—-7Z
T// T
vV -—
C
700
—_— +
and o Y7 c¢

/ém"% = OD.

A Number of more general remarks can be made concerning
the relations which <« and k must satisfy. Writing v, and

¥, in terms of momentum and energy, equation (9) becomes:
|= Jr
Eo

or more succinctlys

£ =

J

o

7 LS
.o-—""'Q

Ef"
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§v In other words, the four-momenta are orthogenal, Now we can
see from another viewpoint that 1Qr has to be spacelike for

¢5 radiation to be possitle. If 1%- is timelike no other
real timelike or null four-vector can be orthogonal to it. In
a medium however, the insertion of factors of n(=)  will imply

M
that f%— will be gpacelike where n is the index of refraction.

/ﬁﬂf —#(wj ﬂg>
fﬁf/« 20"0{0 o >l

For photons

Further, since 1%- is spacelike, we note also that there are
spacelike four-vectorswhich are orthogonal te it. This raises
the possibility that a tachyon field might emit Cherenkov

1 radiation into other tachyon modes. We shall not explore that
possibility in this thesis,

Now note that equation (¢) is the condition for a Lorentaz

transformation with boost velocity fﬂ;. to an inertial frame
in which the source has infinite velocity and zero energy.
This frame is also the rest fraﬁe of the emitted 77 and the
frame in which the source would be a pure current, (zss Apjen!ix

i
e

Note that for a tachyon

oy = I/ = (12)

Hence:?

S ’/O;Jﬁj’ - d (13)
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Now if the tachyon does not change its internal state

dm =e -. | (1%)
By conservation of momentum, the four momentum of the
emitted -7~ must equal the negative of the change in -fir .

Hence:
> A
: —-— (15)
d =" fr
Therefore combining (/3), (/7), and (/5)

r
T =°

and we obtain equation (// ) again. In this argument we as-

(16)

77 ™~
sumed. that /f/. <& f,u , i.e. we ignored tachyon recoil.

The Lorentz transform of the energy of the 77 1is
, S -
So if we, for the moment, wanted to consider the possibility

of superluminal Lorentz transformations, we see that if U= U,

then by equation (9) or (/i) we have:
/

E'=-

Hence the energy of the pi particle which can be Cherenkov
radiated is zero in the'rest frame of the source, as needed
by conservation of energy since the source doesn't change its
intrinsic properties. |

Equation (/o) differs from the'equaﬁion for cos 0 de-
rived in Chapter III. The:difference can be explained by our

present use of equation (/) an ( /2) and (//) which tacitly

.-assume no recoil or 7% and -f; equal to infinity.
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(“ To conclude this section we note that conditions on T?T
which have been derived may be necessary but certainly are not
sufficient for the existence of massive Cherenkov radiation.
The full justification of these results must rest on a detéil—
ed calculation of the field generated by a source., However,
some insight has been gained into the characterigﬂ%ics of the
radiation to be expected from a source whose velocity exceeds
that of light. In particular, the relation of angle of emiss-
ion to momentum of the 77~ was found. We alsc demonstrated
the existence of a minimum for the momentum of a pi particle

which can be emitted as Cherenkov radiation if '%@T¢v .

We have previously investigated the possibility of a

Cherenkov radiation of massive pmrticles from tke viewpoint

ﬁ-,&;i‘»&; 3N

of particle kinematics and from the viewpoint of wave field
resonance. Having demonstrated the kinematic posgibility of
such generalized Cherenkov radiation and found the relation
between angle of emission and the energy-mementum four vector
of the emitted particles, we now need to look at the dynamics
of particular models for the coupling.

One can identify a number of candidates for a detailed
moZel calculation of generalized Cherenkov radiation,
Model As Stochastic Spinless Quantum Theory

One can calculate the transition probability, fkgure (1),

T = 7T+7T7 s and differeﬁtiate with respect to time to
get the rate of emission of energy. Since the tachyon cannot

make a transition into a state which cannot Cheeenkov radiate,
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{; the energy emission is a continuous multi-particle process
yielding a characteristic dependence on time. In such a
calculation, the S function which expresses conservation
of energy and momentum determines the Cherenkov angle as in
Chapter III.

This calculation can take recoil into account. The re-
energy

sults yield the rate of loss of the tachyoquzaxheﬁemé$%c4

argy, and the polarization and frequency distri-

bution of the emitted radiation.

For an electron in a medium there are three possibilities
for a maximum frequency cutoff. (i) One can certainly use
the electron eneigy as the cutoff since the particle cannot
lose more than its total energy. (ii) The index of refrac-

{ tion is a function of ¢v -and in general n approaches unity
when & becomes large enough. There will be an 4.y deter-
mined by ") beyond which g < f%ﬂg) . There will be
no cherenkov radiation for those frequencies exceeding Lu&wf
since.cos @ = 7%%2 will then exceed one. (iii) There is
also a maximum frequency of Cherenkov radiation in a medium
determined by the conservation laws. Solving equation III -

(33) for &)

We see that for a given electron velocity and index of refrac-

tion, ¢4’ reaches a maximum when cos 0=1 ([5‘ 7] 3"""1"")’

,’_ﬁ/ I- =7 (17)

At T

) S~
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{' For a tachyon in the vacuum none of these frequency
cutoffs can be used. The noncovariance of (i) has been
discussed in Chapter III. Neither (ii) nor (iii) are relevant
since they both go to infinity when v>c and n=i.

Two and three are also no good for a prearranged distur~
bance which exceeds the velocity of light in vacuum such as
discussed by Bolotovskii and Ginzburg [72]. Hence, a form
factor for the tachyon must be introduced. We shall perform
such a calculation, taking special cognizance of the form
factor problem. |

Model Bs A Prescribed Source

In the event that the field is coupled linearly to a
prescribed current or source, with /{;(.==v£}’¢r s ONe
{ obtaine a linear equation of motion for ¢_ . The solution
for the field can be written down in terms of standard Green's
functions, even in the case of massive Cherenkov radiation.
This method is similar to the classical solution for electro-
magnetic Cherenkov radiation. It has the added virtue of
providing, in addition to ¢°aﬁ the interpolating field
including the virtual 7T or ¥ A « Therefore it yields
the field behind the tachyon and hence, the force exerted on a
stationary “charge*/ The rate of energy emitted by the source
may forﬁinstance be calculated from integrating the stress
tensog:for,the emitted field. The solution for @_- makes
evident some interesting features of massive Cherenkov radia-
P . quantum
tion; for exam}e, the field éT is in a coherent/state. We

- shall carry out such a calculation also.
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(_ Model Ct Spin Effects
The effect of the spin of the source on the emitted field

for ordinary Cherenkov radiation has been calculated for |
various spins up to two,(f}é] Jelleél All unitary irreduc-
ible representations of the inhomogeneous Lorentz group for
spacelike four-momentum, except the scalar case, are infinite
dimensional in the spin variable,(Z}@] Shirokaﬁ. This might
campletely change the character of the Cherenkov radiation,
but we shall not pursue such models.

Model Ds NonYukawa Cougling. etc,

Higher order contributions to the Cherenkov radiation
might be calculated, For instance, for a Boson current one
can include the simultaneous emission of two photons or

{ possibly massive quanta ("seagulls”) figure (9%). Also con-
tributions from virtual pairs could be included to this order.
Figure (%). We shall not pursue such models, either.

Model E: Ap S-Matrix Model

Such a model would allow us to avoid the stochastic
assumptions of model A, and would allbw us to investigate the
degree to which a proper quantum treatment of the tachyonic
degrees of freedom would alter the coherence properties of
the emitted Cherenkov radiation. On the one hand there is the
coherent aspect of the emission resulting from model B. This
is to be compared with coherent radio waves resulting from
macroscopic currents of electrons. Or it is to be compared to
the emission from a laser where stimulated emission and feed-

e e e ek produced by the mirrors give rise to what can be visual-
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(- ized as a net atomic current of macroscopic size associated
with a large number of atoms. |

On the other hand, there is the postulated incoherencé
of the radiation emitted in model A, an incoherence we
associate with the recoil-induced alterations in the state of
motion of the tachyonic source,

With Cherenkov radiation, one encounters a situation
that may be of an intermediate sort. Because of the great
speed of the Cherenkov radiating particle one might expect
gsome aspects of a net classical current with quantum fluctu-
ations superimpesed. These classical features might be
similar to those of synchrotron or bremsstrahlung radiation,

for example.

We now calculate the generalized Cherenkov radiation of
a massive field using Model B, We assume that the scalar
field, which we call "%, is coupled to a superluminal pre-
scribed source, which we represent by a c number, that is, by
something that ¢gpmmutes with all operataors of the theory, and
which, has a nonvanishing expectation value in the states of
interest.  As is well known, the field generated by a pre-
R A e Ry s o M oy S e
Hence, ‘the problem is the essentially classical one of finding
the field If%, which is generated linearly by a given P .
The Green's function (H.and T) with the boundary condition
appropriate to outgoing waves will:be employed. After finding

¢‘“Jt we will determine the creation operator for emitted
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ds,

{: “7T  particles and thegA the number emitted per unit time at
various momenta, This model does not include recoil; we will
show that the kinematic analysis given earlier in this Chapter
is appropriate for determining the coupking to the modes of
the field. The assumptions are appropriate for a model of a
very massive, classical tachyon with a given charge distribu-
tion. :

Further analysis, after obtaining S%é%h o Will be

applicable to model A also. , o

The Hamiltonian for the pi fiéld, including the inter-

action with the source, iss (H and T)

H:/{%}/': e J'3r[¢'2+@7;§+ M;,éizy(ﬁﬁg

(18)

We consider the source to be undergoing uniform super-
luminal translation with a velocity ¥ in the Z direction.

Since the source (and field) are considered to be scalar, we

have(i!gi].schweber):

f’(x') :-:-f(X) where x7= A% x" (19)

If the source velocity were less than ¢ we could use this
equation to find the expréssion for the moving source in terms

of a static charge distribution in the rest frame of the sources

fv (X/’Q%J\Q —:} (/’\_’7?‘ | (20)

whare /f' denotes a Lorentz transformation to the source
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{ rest frame, and /f% is the rest frame charge distribution,
assumed independent of time. However, for a superluminal
source we do not have the freedom to make a Lorentz boost
fransformation to a nonexistent superluminal inertial frame,
Instead, we take as our standard refe?ence frame one in which
the tachyon energy is zero.

In addition, form factors are generally taken to bé
functions of ‘Z‘E(f’/“/"]~< which in this case would equal 1, .
Hence; the form factor, roughly corresponding to the Fourier
transform of the charge distribution, would give no cutoff
%o the Cherenkov radiation.

The resolution of these difficulties is found in appendix

(¢), where we justify writing (note « b= = ).

C bpba k)

The “0" inv//% refers to the fact that £ =o 1 i.e. V= O
in the standard frame.

We find that certain ambiguities arise if we attempt to
switch the source on adiabatically, because of the existence
of the Cheré&ov radiation which we are trying to calculate.
The source will be assumed to be switched on suddenly at

7 =-7{ and switched off suddenly at +=+%, At first
we do not assume that the charge exists at the other times,

In appendix (D) we take this into account and calculate the

creation (inner bremsstrahlung) radiation which results.
To calcilate the outgoing field, we use the equation (H & ¥L2)

‘. 35‘(’_“}7;) = 4Gv +ﬁ2 (f-f;f-t’)/?(':/%’ Irdt’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

@{ where the Green's function isi
. .5
A= antedi sl (23)
l/k<; /9
CXEJE GL (tT -t,)
(z.T)z
and
. /) _ N
PEY =/>(>sv)(2~vz9f‘/)[9(“4) O¢TZ)
Since ¢™ is assumed to be zero, except for the zero
point fluctuation of the field, we will drop it. th is
still needed, of course, to maintain the canonical commuta-
tion: relationsof the field. Inserting (23) and (2¥) in (2%)
we obtains
- FFY
A c{—f’cl/&e W, (¢- T) %, é"U/‘) (25)
{,_ ¢(N)”’177)3f j % f( >

In the integral over F' use the dummy variable for 2° .

—_ ‘= d
1=l e gt b5

w& oét‘al"l:
| 7 (X1 A9 1 _’g._?’_ iyt
o 4 Lz-_’e A CEL YR

@f):—’;;;‘z'“___
Co

Hence, using the Fourier transform of /fD
- 7 2 1*“‘ (f Z‘) {é t) . --t‘zl!‘?L
"1—/ CH/ _iJ__.:é“e, Q é‘z e

“/)Q L /D L W’/

C,

5‘,1"
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Now performing the 1ntegral over times

(fﬂ*gﬂ/he ‘[‘;un‘ ey ) (% 45) ( (26);
; u&'r k;_?f) z(c\)/h—,}z%v‘) /J !

We see that this has the correct time dependence for
free radiation of the field 519 as expected from the standard
derivation of A , with the contour of integration tq A
insuring the correct boundary conditions on A"‘T and A“‘Q" ’
respectively.

We can obtain @, by using the relationc [65] Barton:

( oAl »)/*j“ X £

or (H and T) from inspecting the form of ¢ ™

* ATV S S S (27)
a
¢ ::G@!/L c(/lv_e/ a,h + € 4
) zLJ&
ot
With a change of variable in the coefficient of et so
that _J »=+ (26) reaches the form of (27) and then we

obtains

- er/v ( _;_)M@ W (28)

a
S Ll Sy —ha?)

Hence from (28)

gt 28D [p R [t

g ”t‘ @m “J,k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5

g: Now for large T GB@] Messiaé}

*% [ T § () >
L, ey ) =

Hence

.,/,,,l (a a,)= / ) //(@)#‘)/5@ 4,r> (31)

The 8‘ function insyres massive Cherenkov rauiation at the
appropriate angie for each value of ¢J, . Multiplying by
t), we obtain the rate of Cherenkov radiation energy loss
at each angle.

e We note that, as expected, the delta function is the familiar
kinematic one. Hence, the kinematic analysis we performed
previously gives the relation between the angle of emission
and the energy of the emitted particles, and it predicts the
existence af _£

In order to calculate the total energy radiated per unit
time, multiply by «w, and integrate over all wave vectors:

4 = E fr Bt

(32)

Assume that the charge distribution of the source is cylindric-

ally symmetric (as in appendix (¢) ) and use the standard -

relation ([61] Messiah)
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| C(x-%) e (x.)=-o
( {(g))— "5775/‘ %'(m;eo

in order to perform the integration over %k = =Ny AR /é ' .
We have for the integral. ( 519 = aR/MTHAL /)~o¢e)

ff/ S (ke JEUTm) [ 4k, e 33

H"/WJL/

gince we used

doy _

L) /'é_.L
Th, = o

and . » . N lv-L
S(u{—/L%U“) => oy = At ke =
= b, = DAy

The S function also implies w,=.4,v" in (33) and
S&p— 277 . Using these in (33), we obtain for (32)

JE (7“ )’L"[J/A ,@/(m M)) (34)

At this point, we make some observations on equation

( 3&-5. From the argument of /D we see that _£ goes to

zero whent
- A= Yl | (35)
/k”“;‘w A5
C‘L
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i(» Note that /k;uf? o if 'wgr->a s .8 for electro-~
magnetic or gravitational Cherenkov radiation. Also kemin —» 0

when VY _-~> oo ,

When V. increases we also see from Equation (34) that
kmax ag determined by //’ also decreases. Of course there
need not be a sharp cutoff, but as v increases the high
frequency coupling is diminished because of the Lorentz
expansion of the source.

Now make a change of variable in equation (34)

’ //l /
, . 2 = 5
ey ™7 "—‘~‘>/Aﬂ~u a

And we obtains

| - ’ el ! A (36)
( J%%fg '=:~'é%gi‘m1'4ét‘J‘éz::éyi (/4L%"17)‘4A%;y/ é

All velocity dependence has been removed from the integral.

We thus obtain the velocity dependence predicted in Chapter

III on the basis of Lorentz covariance.

Now look at the radiated field using model A. We assume
that the tachyon changes its external state of motion (it recoils)
change
but that it does no@Aifi “internal” state &6f excitation during

the emission of a single 4 ” particle. The process we

: ——

calculate is diagramatically represented thus:

e R ks |

oo . o . ) " e
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where Y Y

( and

(54 :f‘/’éy Hy K (x3) d T

We assume the usual boson commutation relations for the pi-
field:

[ G, ﬂ{]r-—o = [¢(rt) G zjj
[0, 3p = ¢ £

We do not write out the tachyon commutatief relations, which

and

we will not need anyway. Hence, the equation of motion for

<¢ iss
- (2) V+M)§5®:
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( The equation of motion for the tachyon field ¥ will not
| be required. For definiteness we wrote it as a Klein-Gordon
field with the negative mass squared term displayed explicitly.
The S matrix element we need to calculate is between
momentum eigenstates. We assume there is no interference
betwéen successive emissions of the Cherenkov 777 Quanta. We
make this assumption instead of solving the coupled field
equations given by our Hamiltonian theory, since we do not
believe tha%}ﬁ;;iltonian field theory has any general
significance: we use it only as an effective Hamiltonian
theory to generate a few elementary processesg. ' :i-  inh:
Spo= Pt D

Using the LSZ reduction scheme ([65] Barton) for the 7~

{ particle we have: |
S X
' \ ¢71 ¢ ¢
S..=§ ‘.,ujc!x <3 Y/vz®/ﬁ> (37)
’,:1 ’F‘ v/zm <7D
Now using 726‘/ _ QC\IDX”Z@)GM‘PX S, we ;et

(38)

' _ G o, ‘4 / )
Sp, = 6.7 %@ PR 1w 1)

To evaluate the matrix element of the tachyon scalar current
we take the liberty of writing the tachyon field in the form:

u —-(\‘it +‘\'&}__+
1) =y (/ig,@ (" 4 te "‘4&) o7

al_ creates an anti-tachyon, Q, destroys a tachyon

RN
i
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( Thens

-p&
<ol = J‘< /“ff“’v ”@ﬁ?%[e e Qi]) (ko)

2. E@:"

where to lowest order in the coupling we neglect the differ-
ence between the free and interpolating fields. Since we are

looking at the case p'#p, the contribution is from the term

containing: "
el ]
szrétz/ Cgk”avo [”é%:h’——uc%ﬁf f g&éf 7’ *

Hean N

( 0> = g,
" <o /af Q/I; a«”a / /k' he
irrespective of whether the tachyons are Bosons or Fermions.

@’ f‘//g 1)
<<?f /’ZC)/%?:> __L _JFJ ;*\f;:;?jch;ETj?

L)

Hence:

(41)

IR S ¥
,/zéKfQ‘}ZEWU'
Now, [?Zﬂo7{?is a scalar function, as can be seen by the way
in which it is defined. As in the case of the ¢ number
tachyon source, we can relate the scalar function in cne frame
to the function in any other frame, with the defining equation

for a scalar function:
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- W) = Ke) 5 4'=n+ (42)

| ~ ,
That the form factor KX (fﬁf) is not just a function of

éf‘/’?z is argued in appendix (C ). As in that appendix, =
we make use of a transformation of the function i?
to a2 standard - 'fommé in order to write the dependence of
f?@d on the velocity in an explicit manner.
Earljier in this chapter and in appendix (€) we treat -

the case of a ¢;nnm5ér-tachyon charge density by transform-
ing to the standard inertial frame in which £ _=e
We argue that /pbd‘ in that frame was not a function of
Z and that therefore th€. Fourier transform implied that
‘/ﬁ25=o _« For a gq-number tachyon free to recoil upon
emission of the 'n4 particle there is ﬁé unique frame in
which it has zero energy. The frame in which the tachyon
initially has zero energy is obviously n&t the same as the
frame in which the tachyoen final state has zero energy. In
addition, even the tachyon direction, which we call the 2
axis, is changed after the emission;procesé'because of the
recoil. |

.Actually, what we really need is to.find an inertial
frame in which the form factor takes on a standard functional
form. We now seek a standard ihertial frame. In Chapter III
equation (31) we derived from conservation of four-momehtum:

(x"* is the -7 four-momentum) :

-
t
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Eoh= oot " (#9

In that derivation the initial tachyon four-momentum appears
in the result. In the same way, it is straightforward to
derive a relation in which the final tachyon four-momentum

appears.,
N

/ - N
~— " 4 o b - v . (4)
tr.//l = f;r» “12

2

Adding the two we obtain:

| N T =3 (45)
(£ +e0) 4 = (F 1 1)
{ We camnot find a single inertial frame in which both E.
and .ET' . are zer¢o. However, we caﬁ make a Lorentz trans-
formation to an average inertial frame in whihh E ,’,4— E';.—:o
if we don't use the”reinte_rpretation principle,./ The ‘0. .
refers to this standard frame: i.e.
o s o

Therefore in this frame .

=

and from equation (&5) ey

e (7%;** P, == (4¢)
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Equation (46) becomes
all o s O
,/k ° (?-/.U_) =
e 2, o
We now let U4V  define the 2 axis. Hence k, =20. If we

transform to this frame we can write (<) Appendix <))

KLY =K (n74") = K (4%,- ,,,4‘;) %) (47)

<

’fi; is not a function of £, since:
/év = /)—'J}) — O
> z —

To implement this transformation we determine the boost &

#. ey

&

W  to the standard frame from the condition /ké:o 3

We finds
/{;% = (/kz"éo M)Y“ e =2 /éz ://?e(’( (48)
ors
N
K.~ &

To find W we divide equation (43) and (44) by 'LET and 257;

respectively and add:

LR
- = =0 Wl A (49)
‘F 7 ——— /
//zc,:/ﬁ‘(v}:—f-_—r)"l - [ET & /

.

Hence to a good approximation if *; is small or £ is large

o - (}z__'f{—fv") (50)
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(* From (48) and (50): _
' 2 e s (51)
w T T

This gives us the magnitude and direction of the boost L to

the standard frame. We then have from (51)

—_ (52)
/;4;414;
< = N =

Hence 'tb ‘fénJ /kc; Lo (nsert (n (6’?)' ,
b= L a- ), = '4)

using (50) and (51):

C AT /]

Now using (52) for 7{

. (53)
= W= Ty

Inserting this in (47) we obtain the expression for the form

factor which explicitly shows the dependence on velocity:
R = R, (s, Ay 25
~ (%)

.We have thus isolated the dependence on v in the form

factor in the term This takes care of the “Lorentz

e
/1
.. expansion® of the source in the Z direction.
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{ In order to get a convenient approximation for ‘ <V>
we note that by repeated application of the arithmetic-geo-

metric mean inequality we can easily shows (-f or v)c)
[, [+ /Yf | oo 2 15,0 2 [

(,l/’ ‘te the f‘gé’,\&SSUMG’J U'v‘ tL/’f’Nm *’"\?ely collinear en This *fr«me)

(55)

Hence, I‘(f ‘ofr] is a better approximation to 17’/«»/ than
I*{ +¥, / . Also, it will be a more convenient approximation.
Therefore, combining this approximation For/ @{ with (54%)

we obtain

/gﬂ) = /< (//% /‘yjfmf T (56)

Now using (41) in (38) we have:
- . ) -~
S =0+ &)’ S f,/‘) R+ (57)
';'( ¢ .‘/ ‘It--}z'E’r', ’zEr

With this we can form the transition rate per unit time)@é#]

A

Bjorken and Dreli)

o /S / _( /ﬂ— | KG9
i SWLE ES
(7)) §& = VT

To obtain the rate of energy loss per unit time we multi-

ply W; by &, , the energy of the emitted 77 particle and by
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(; the number of final states of the tachyon and 77 in the
o 4,
momentum interval J f/,-.

v Ak
(_‘,_77) ff e’

Also using the approximation (56) for ﬁ'(k)we obtains
2 (58)

de_¢tm g-t@ G
A2 R b i

Now look at the integration over the energy conservation part

of the delta function, integraxed'over a3k,
L e Y . (
" S(wg-£467) b,k dPd Ry 59)

where we have used cylindrical coordinates. Assume cylindd-
cal symmetry (see Appendix (¢)) so that we can do the integral
overt SEAP:T‘7T . Now to do the integral over -4, use the
relation: [61] Messiah

S(x~#.) 9(%,) == (60)
ST E BTN T k) £

and remember that our analysis of the energy momentum conser-
vation showed that the energy delta function gives, in our

approximation (see 50)

; JOREN ’“‘*'”)) -
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[ 9'(&){' = Tk o,

a well known relation.

and (61) implies: . . .
Gy = ety 7, =y (L2

, 2 2 {7 //21 L—_\
= 4t :[%r)—j/k{% ”::/ = -7,
A 1%
Hence, we havei

(3 - = :£> ~ 4

3 "
cif?z”

A

Now make the change of variable,

¢ é
A, = oA
('d

and use (), = ,_//12 ( 7!%—"'? for the factor of 4J, .

. 5, ¢
do the integral over dJ-k, and over d fr which is trivial

B e
because of the & (’f' ‘/"’/2 .
THercfore we havey

AE Ttk A / /g (m)@) /z

g -' 477 ) 2 [2ma]”

To obtain this we used
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(63)

(64)

> S (’ﬁf [%,;T "MV) /‘i/{l-cu&Cl %

(65)

(66)



Gy
b= R A= 2o AL

(67)

IF""——-?I
and “Vr?'7 is an average velocity of the tachyon, aver-

=
aged over possible final velocities, Strictly speaking, this
factor should be within the integral sign since 'LQ; is a
function of «4e% . The bar abave t?;igg;) indicates that
this je the definition of the average. We assume recoil is
weak enough to make this meaningful, i.e, &J,.. <<&, . This
is not lLorentz invariant of course. In fact, we assume that

the tachyon does not pair annihilate in the observor®s frame.

Hences . ‘
U = VAV fi.TG;
> — S |
{ Now the integral in (30) is independent of % and is just

equal to some constant. K. contains the necessary cutoff or

H,.,. Se %ﬁ% is finite, according to the appendix (C).

Hence, we find on the average:

de =
d+ !

as predicted. Following equation (66) the same analysis
applies as is found for the c-number, non-recoiling, super-
luminal source. |

We saw that both the classical c-number and the quantum
derivation, the latter with certain approximations, yielded
the same form of the energy loss. The further analysks
follows from this result and applies to both cases. Each

derivation, for %@7#0 » Yields the existence of a minimum
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( value of the k vector, AR i, . To see the consequence of
this we need to look at a particular model for the form factor
or charge density. We will use the notation of the c-number

tion but ) can be thought of as equivalent to _K
section bu /365 ca g q @_;'__.
(Compare equations(36) and (66).)

As a simple example of » we look at a sphere in k
spaces i.e. /%(/'/hf’za)=f W (Jz/é'L » )
(from our value for k) ; ) = j 69( e //zmyf
is a possibility, where s, _ ~, <tc.
2 X
Hence c’E ~ 9 - //2,1/ +"’ _?y:(/lﬁa.:’ﬂ”' -”1;_)
a7 T ‘m =

e (4 *’%J )

/ €77

r-m‘

Hence, we see from (67) that if 74@7 /1’ moc there will be
no generalized Cherenkov radiation. In general, there won't
be a sharp cutoff in k space. There are three possibilities.

a) If k  represents the approximate extent of appreciable
values of S in k space, then if 73> k_ there will be no
generalized Cherenkov radiation. .

b) If 4, > %7, , the radiation will be uninhibited
by the cutoff. :

¢) If _4 x 7, ‘there will be only a small amount of
radiation.

We see that there is a possibility for tachyons to be
strongly coupled to a massive field but with a cutoff such

that the generalized Cherenkov radiation might be less than
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‘_ that produced by a coupling to the electromagnetic field.

Q‘* There might be no generalized Cherenkov radiation at all.
Hence, tachyons might be produced by strong interactions and
not lose energy by massive Cherenkov radiation.

In order to see the characteristics with respect to
angle and energy of the emitted particles, multiply equation
(31) by ﬁU/;L and a delta function picking out the angle or

Eﬂ_ one is interested in, and then integrate over _# .
There is a one to one mapping of /kz onto angles or energy

and we can use the relations:

\///:.er;- —=w = hr = /kf ]/é/u*mg (68)

with 2 little algebra to finds I = intensity of radiation of 77*2

) dZ 47 _ dedZ : (69)

—

%-‘-x d/&% dw mvdf,‘_} ‘:l—_@

3 e A
and since 11;7. s Py

7]
kY
\[————-—"‘g’:,‘
vy and

%ﬁé = % | (71)
(xr e 9*’) |

Now we can integrate over /Z n just as 8 previously in this

chapter if we assume cylindrical symmetry. Therefore
d’e (-—/)4& l (Jg, e ”z ) (72)
et o S i

For example, the rate of energy radiated at an angle 0 is

L
(use ka = ;;;and (70)
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Ve dE dw (73)
{ hle T dtdky v d€

and therefores (4.&1 =z om © d Q)

dr _ /) /)MQ A /f/j"’“’

A

In this equation the expression for .Aéz in terms of 0,
obtained from dividing (70) by v, should be used in the argument
of //3 so that the RHS is a function of 6. Note that as

> e this expression_goes to zero except when the
denominator is 0 at %§1¢ﬁ9:=/ which is the usual electro-
magnetic Cherenkov angle for light if the index of refraction
is one.

When Sommerfeld calculated the radiatioﬁ for an electric-
ally charged configuration with v >c, he found an infinite
rate of energy loss from an infinitesimally thin spherical
shell, [64] Sommerfeld. We show in appendix (F) that this is v
also true in the case of generalized Cherenkov radiation of
particles with a finite mass.

In appendix (D) we consider in more.detail the‘various
types of radiation encountered in creating a particle which
exceeds the velocity of light. In addition to the general-
ized Cherenkov radiation which we considered in Chapter IV,
we find an additional radiated portion which corresponds to
destroying. the charge at rest and immediately creating the

superluminal particle. One portion of the radiation is found

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

to be independent of the lifetime of the tachyon for large T.

4

It corresponds to “prompt® radiation analogous to the beta
decay inner bremsstrahlung produced by accelerating for
creating) a charge from rest to a final velocity, [32} Jackson
This prompt radiation appears here twice; as the radiation that
would be obtained if the charge were created, and then as the
radiation obtained as if the charge were destroyed. Another
portion, interference radiation, also not Cherenkov radiation,
is seen to.oscillate as a function of T..
In appendix E we consider the interpolating field in
order to gain insight into how the radiation develops.
In the above calculations of the various properties of
generalized Cherenkov radiation it was assumed that the
( velocity of the radiating particle was approximately constant.
This makegs it easier to determine the direction and existence
of the radiation through a Huygens construction and geometriqéonyﬂéﬁ-
ations However, according to our derivation of hyperbolic motion in
Chapter III, the tachyon will be constantly accelerated as it
2his acceleration on thedirectien of
emits Cherenkov radiation. The influence of,the Cherenkov
radiation is obviously of some importance for the theory.
From an experimental standpoint, it is necessary to know the
characterigtics of Cherenkov radiation from a recoiling tachy-
onic saurce.
To attack this problem, &n appendix.G we deduce the v
envelope of the field generated by a tachyon hp hyperbolic

P Ca
JEIED RPN )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

{; motinUsing Leibnitz's method for the envelope of a family of
curves we show that the radiation in a particular case (at
the time when V.= % ) is a half circle rotated about the
direction of propagation. Such a result is of importance in
designing a successful experiment to detect tachyon produced
Cherenkov radiation; radiation which is found to be focused
on a ring of radius g-1.

It is found that for this métion, at least, the deriva-

tions of cos @ in Chapters III and IV give the correct results

at each instant.
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(L Chapter V

Application of Results

We now comment on some of the experiments which have Lsen
carried out. On the basis of our results, we question the
interpretation which has been given to the findings reviewed
in Chapter II.

In the second part of this Chapter we describe realistic
approaches to detecting faster-than-light particles suggested
by our calculations.

In the first experiments which were carried out, Alvager
and Erman [55] assumed that tachybns,have;an electric charge
and are .acted on by external fields, although not subject to

Cherenkov radiation. We have shown that, indeed, this is

7~

poseible for coupling to a massive field.. However, for the
electromagnetic field the ‘prohibition of radiation doesg not
seem justified since we found no minimum wave vector of emit-
ted radiation if 77,=° ,

The experiments based on a search for electromagnetic
Cherenkov radiation, were also negative. Alvager and Kreisler
[68] and Davis, Alvager and Kreisler [69] .used an electric field,
and Bartlett and Lahana [?2] used a magnetic field, to accelerate
electrically and magnetically charged tachyons, respectively.

The equation they use for the rate of energy loss due to
Cherenkov radiation is based on the usual Cherenkov energy loss

in a medium.
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They take the index of refraction, n, equal to one for a
vacuum and use the tachyon energy as the cutoff in the integral

~ in order to get a finite value. The result they obtain iss

AE 22817‘415‘1 )
dx T z_*72~/31 '

which is not Lorentz covariant. In fact, as we indicated in
Chapter II1I, the rate of energy loss would be expected to be
greater than the rate given by this. When we put in some
reasonable parameters in Chapter III, we found that the empreted
vangecwould be 10~ em.

The field used by AK was 3 KV. This would not have had
much effect if the parameters were approximately those of an
electron. If the field Cherenkov radiated were more strongly
coupled then the range would be even less. The only field more
weakly coupled that has been considered, nemely gravitation,
couldn't have been detected although the range would be much
greater, .

Baltay, Feinberg, et al /70] claim that their missing mase
experiment has the advantage over other approaches of being
"insensitive to unsolved problems of the interaction of tachyons
with matter or their propagation through space." According to
our derivation of generalized Cherenkov radiation though, it is
quite possible that the tachyons could not propagate far enough

to be "missing®. If indeed they are strongly interacting, they

might lose all their energy over extremely short distances. The

|
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(‘_ products of this radiation of hadrons would appear in the bubble
chambers displaced a microscopic distance from the other reac-
tion products. Hence, we conclude that their null result
applies only to those spin 0 tachyons whose massive Cherenkov |
radiation is inhibited according to the possibility derived in
our theory in Chapter IV,

In the cosmic ray search by Clay and .Crouch [?él the extens-
ive air.shower (EAS) with which tachyons might have been pro-
duced were assumed to originate at heights between 20 km. and
400 m. The tachyon interaction with the scintillator may have
been direct or thréngh the generation of secondary particles.
Hence, the tachyons accessible te the experiment need not have
been electrically charged. The signal was then fed into a

{: transient recorder which was examined when triggered by the sub-
sequent arrival of an EAS, The presence in the transient recorder
of a precursor presumably indicated something whihh traveled
faster than the EAS, which itself is supposed to go at essen-
tially the speed of light. L

According to ourcestimate in Chapter,IIi of the range-
energy relation for electrically charged tachyona; if the tachy-
on produced with the EAS had an energy of the order of 1015ev

its range would be only abeut 10 meters because of the loss of
energy through Cherenkov radiation. 0f course, the parameters
relevant to the tachyon could be quite different from those we
assumed., It is possible that the parameters are such that the
tachyon range is larger than our estimate, in fact large ehough
_for a 1015ev tachyon to travel 20 km and yet not be incmnsistent
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(’ with the null result of AK and DAK. This is easily seen from
— the constancy of dE/dx in III-(46). Hence, a 103 fold incresse
in range at 1015ev would also correspond to a 103 fold increase
in the range of any tachyon produced in the experiments seeking
Cherenkov radiation. By the considerations in Chapter III on
the order of magnitude of the range, such an increase would not
have changed the outcome of those investigations.

However, barring this possibility for the moment, we assume
that electrically charged tachyons of that energy could not
have traveled so far. We now look at the possibility that the‘
purported tachyons were not electrically charged, but were
strongly charged. If in fact, the tachyons are strongly charged
then according to the results of Chapter IV, they may be sub-

( Ject to a generalized Cherenkov radiation and have an even shorter
range than just discussed., On the other hand, we also showed in
Chapter IV that the existence of kyi, creates bhe possibility
that the generalized Cherenkov radiation mighf be suppressed
by the tachyon form factor, thus greatly increasing the tachyon™s
range. If the latter possibility is in fact the case, then the
strongly interacting tachyons could have heen detected by Clay
and Crouch.

The. latter case is however, inconsistent with the null
result of Baltay, Feinberg et al which we;interpreted above as
excluding the. existence of very long range tachyons with suppréss-
ed massive Cherenkov radiation. Very long range tachyons
would have been detectable by the EAS and the missing mass

experiments; and on the other hand vdry short range tachyons
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would not have been detected by either. Hence, we ask if it
is possible that the generalized Cherenkov radiation is in the
intermediate range found in Chapter IV, aqcording to which
the radiation is only partially inhibited by the existence of
kminand the fprm factor. Then the range might be long enough
at 1015ev to be detected by Clay and Crouch and yet short
enough not to be detected by Baltay, Feinberg et al. Again
the constancy of dE/dx which we found in Chapter III allows
us to answer this. The linearity thus implied between x and
E and the intersection with the Qrigin means that a range of
1 km at 1015ev extrapolates to lo'ucm. at 1 MeV.

Hence, we conclude that these experiments can be made
consistent with each other by assuming that the generalized
Cherenkov radiation which we derived in Chapter IV exists, and
that the inhibitory mechanism which we found also is present.

J

We had derived in Chapter III that a tachyon emitting
electromagnetic Cherenkov radiation would lose all its energy
over extremely short distances, subject of course to the para-
meters one postulates for the tachyon. Hence, as compared with
equally energetic ordinary particles emitting Cherenkov
radiation, one would expect a short, extremely intense burst
of radiation.. As we have seen, such short range frustrates
attempts to detect thenm.

However, according to equation IV-17 for &4 .. for electro-

magnetic Cherenkov radiation in a non-dispersive medium the
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: e radiation will be inhibited because of the conservation laws.

Althoggh the equation is usually thought of as applying to
electrons in a dielectric, we have derived it on very general
grounds; hence it should be applicﬁble to a tachyon in a medium
also. Dispersion must of course, be taken into account for
any particular medium. For a tachyon, the radiation will
again be present at frequencies sufficiently high that n(4 )->1,
But then the tachyon form factor will begin to inhibit it.
Still, this presents the possibility for experimentalists to
retard the energy loss of the tachyon so that an experiment
auch as that of AK might become practical by creating the
tachyon in a medium which has very large n which extends to
very high frequencies. One would then have to look for the

i‘ ectromagnetic Cherenkov radiation at those frequencies for
which n(w ) =1, or for frequencies below Wp.y. In general,
there will be required a careful analysis of CJmax(n) since
n is a function of W ,

The relation between angle and energy we derived, and the

formula for dI/d), IV-74, could possibly be exploited to
detect the presence of a very short lived tachyon. Investi-
gating bubble chamber photographs, if a correlation between
incident particle and emitted products is found to indicate
our derived relations, this may serve ag evidence of tachyons
emitting generalized Cherenkov radiation. See figure (10) v
which illustrates/typical reaction with the parameters. involved.
A statistical analysis of the relation of angle and energy of

»{ o the "77* would have to be carried out for many reactions,ff
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course, if one knew v, and v, for the cos 0 equation this
would not be necessary since we would already knoew whether or
not v > ¢. However, for Cherenkov radiation we have the
characteristic feature that greater angles will in general be
agssociated with greater energy particles (both the initial
incident one and the Cherenkov radiated one.

If, on the other hand.'the tachyon is extremely energetic,
having been created by a cosmic ray for example;}its path
may be of detectible length in the bubble chamber. Then the
generalized Cherenkov radiation might be directly observed
as many tracks ogjginating along a common (invisible) straight
line. The straight line could then be inferred from the origins
of the tracks. The angles would be measured and compared with
the energies of the radiated particles. A plot of cos 6
versus 1/v, for all of the tracks could then be made. If this
were found to be a straight line, it would be an indication of
the presence of a tachyon. The invqrse of the slope of this

line would then yield the tachyon velocity. The use of the

equation (I¥-/o)
2

r Vo

implies that we are assuming relatively little recoil. A more

cos @ = c
v

complicated analysis would be made if the plot were not a

straight line, using the exact relation (III (2)).
2 2

Vs Y

The hypothetical tachyon line in the bubble chamber would also

cos @ =
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(_ not be a straight line in this recoiling case and the origins
of the visible tracks would have to be connected by a zig-zag
line.

' Another experiment might consist in looking for the focus-
sing of the Cherenkov radiation agasociated with the hyperbolic
motion derived in appendix (). Probably electromagnetic
radiation from a tachyon produced by cosmic rays would be most
likely. Depending on the value of g™ one might have the
detector beyond the point of focus (the most likely case) and

hence note the “virtual® image of the ring.

-
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Appendix A

~

A New Derivation of the Kinematics
For More General Conditions
And Related Phenomena

Analysis is made of the constraints which conservation
of energy and momentum impose on the emission of radiation by
various types of sources. We consider the question from a
general viewpoint so that the results are not limited to
superluminal motion in a vacuum nor to electromagnetic
radiation.

We continue to denote the radiating particle by 7 but
will indicate where the results are valid for tachyons only,
or for more general situations. Allowing for the possibility
of a change in the internal excitation of the radiating

particle, we consider the situation

Tt
;Z:“*“quj/q
ey

T
The square of the four-momentum is given by:

,gfb) p,’," (1) =< %(7) (1)

Since we assume that the particle derdted by 7 retains its
identity although pessibly changing its state during the
event described, the equation is satisfied both before and
after the event. The mass and momentum are shown as a function
of a parameter t which may be thougltt of as the time in any
inertial frame. Taking differentlials:

~ - (2)

A () dgutt) = = (t)dm (t)

We assume that there is n¢ interference between two different
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emiscionz. Now, by congervation of four momentum, we have at

( any time either before, during, or after the emission procecs:

~ (3)
M A N ;
_,/:7_(1} + 007;%) = T)T(o)
and

d f(t) + J,{B(w =o ‘ (&)

Uaine (2) and () in equation (2) we obtain:-

63/:?0) - 7’;};‘) c‘ﬁ?f) =+ W,_c/nf?_ (5)

And integratine from hefore the emicsion ( £=0 ) to a time

T  which ie after the amieainn of the -7 particle:
6
_f/“(e) -7-)__ /\6-) /T — — [_ (o) - 7"7 )J ( )

i(‘ We ahvionaly ured /‘(‘9 in equation (6). Now using

the rolation:

Y N (7)
T £ = 77 .
PP =
and tho apnrovimation::
: . (8)
A = (1) - il L < m,
We ohtain the very menersl recult:
) Pl (9)
—ﬁ“bj 'If‘*’)_ = =+, 87

The internal evcitntion energy difference between the final

and the iritiazl state ig:

AU :‘Amfc_z ' (10)
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Definine €@ as the angle between the direction of the

‘

emittod particle and the initial tachyon we obtain from

equation (0):

' L8
T T _[PS/ID - = 2 11
= Eg;)_/fw//fm/u«e T X 4B (11)
Solving for the direction of emitted radiation c.,26 and
x*

ucing {S ='ich d

,I

T I ' (12)
Coe & ~;r1f 75%ﬁ7;§37 | ﬁfuw/ffvny

This equation applies to a number of different phenomena.

It ig interesting to sne how theze are related +o superluminnl
motion, Mhot enoh n rolatinn exicts jo due to the fant +that
only for superluminal motion in a vacuvum or in a mediuvm, can

a particle omit another particle withou*t changing it'sﬂin-

{ tevmnl c*ate.  Tor this reaszen the kinetie ene}gy of the part-
irla hae an ahenlnto and'not Juct a relative significance.
Henne, i+ ie availnble to onter in processes ~vin- vhéen the
portinle i irolated from other hadios,

a) Tn thr nauation, if AUKLO one has the deeny of
system or of an clementary partiecle. TIf .%o . thin
gives the Doppler chift if 4 <cC « In case = # ,
orno micht ¢~11 this a ~eneralized Dopnlor chift.

b) If o6V >e , 1.e. the particle jumps to an excited

stote upen critting article, then the velecity must he

]
-3

greater than % in a medium. The requisite onergy comes

frem n deerense in the kinetiec encergy. For the cose w=o
' : le] Tamm, I-GOJGMi‘:W3°
this ig called *he anonmalous Doppler effeet, In effect, a

necative energy difference or freguency is "Doppler shifted”

L]
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( to a positive energy. The radiation is emitted within the
forward
forward Cherenkov cone.

In a vacuum, if v>»c then AU can only be zero or
imaginary. Figure (11) is a Minkowski diagram showing one
subluminal and one superluminal source of electromagnetic
radiation. The dotted lines indicate the propagation of the
radiation parallel to the light cone to the detector world
line. The latter is assumed to be at rest. The arrows on
the detector time axis show the reversal in time ordering and
therefore in frequency of the radiation from the superluminal
source.. If one ignored the x' and x'' axes this figure would
also describe the ordinary anomalgus Doppler effect in a
medium with ¢ replaced by ¢/n. If 7ﬂﬂ-is'not zero then this

{ case might be called the “generalized Anomalous Doppler effect®.
This would describe embssion of a massive quantum within the
forward Cherenkov cone, while at the same time the tachyonc
jumps into an excited state.

c) If AU=0 then v must be greater thén the relevant
limiting velocity, énd we have wither ordinary or massive
Cherenkov radiation. The latter is the situation we focus on
in this thesis.

It is interesting to note that a number of strange
properties ascribed to tachyons can be understood on the
basis of equations (9) and (10). In addition it can be
shown that these have their counterparts in a medium. For
example, Feinberg (1967, appendix A) analyzes the emission

...and absorption of a tachydn by an atom in two inertial
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( frames. This has been described in Chapter II.

The counterpart of this process in a medium with ordinary
particles is the following. Initially, an atom is at rest
in the medium. It is in its ground state and then absorbs
a photon. Next, consider an atom beosted in velocity such
that 1fﬂ>€%' . This atom, although initially in its ground s
state, can emit a photon and jump to an excited state at the
same time losing kinetic energy. This is the "anomalous
Doppler effect®.

The latter, "active*, transformation canhot be replaced
by a "pasgive" transformation in which the observor under-
goes the boost. This is because the medium does not satisfy
the same principle c¢f relativity of inertial frames which

{ the vacuum does.
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(J: Appendix &

An Alternate Interpretation
O0f Space-Like Four Momentum

In order to visualize more clearly the implications of
negative mass squared, i.e. spacelike four-momentum, we con-
sider the following related problem. A spacelike electric
current is typified by current flowing throggh a wire or in an
electrolyte. The charge density can be zero but there still
exigts nonzero current. For the sake of symmetry, imagine a
positive charge density flowing to the right and a negative
charge density flowing to the left., In the initial frame of
reference, the net charge density is gzero.

., ¥ = (23) (1
( Now, a Lorentz beost transformation in the direction of
5 will result in a negative charge density because there will
be a greater Lorentz contraction of the line of negative charges
than of the line of positive charges. The usual Lorentz trans-

formation is:

—? -
o’ e
?ﬂ:‘é‘%ﬁ)?)xj @

Of course the current is still space-like ands

\/«’-/____2“".;7 < o (3)

77

If we were to view j as a convection current produced by the
motion of a single particle, rather than by the motion of a

, nonlocalized many body system, weuwould calculate the velocity

e of the charge flow as:
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3 _ 1 (4)
v — -
( /o - ? %
Hence A
7= .%; (4a)

This is to be compared with the velocity transformation of
a tachyon, starting from a frame in which it has infinite velocity
in the plus x direction. We make a Lorentz transformation of

velocity U of this zero energy tachyon (i.e. v = cw <> £=° )
A

R e A (5)
_ uu‘ Ay - u
/ C C.-" 1

Comparing equations (&), 46), and IV-(9) (the Cherenkov condition),
we recognize the trangforg condition between an inertial frame
{ | in which a tachyon né%}ﬁéifiity and one in which a tachyon
velocity is equal to v'. In equation (4), we see that since the
Lorentz transformation velocity is less than ¢, the effective
wvurrent velocity for a space-like current. is always greater than
c. Also note that if U~° , V>, However, such a spacelike
current ig gquite common, in fhct the usual case. We certéinly
do not ascribe any significance to this one particfzd;iiih
becomes ©°° when //9 —>° , Becauge of the many particle nature
of the current, we can not say that the current is a charge
density times a physically significant velocity. Similarly,
for tachyons (which also seem to be very nonlocalizable ([69)]
Pepeg) perhaps there is no justification for saying that the
current of energy (i.e. the momentum ) is the energy times a

physically significant velocity.fi.e. ‘f‘iéijf + Perhaps the
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( fact that ‘Lﬁéf > C has as little significance as does an anal-
ogoue fact in the above example for electric current.
/
L e e e T ot e
At' is based on the “reasonable" assumption that 1f,=1f/;l><,
and v, is the velocity used in at=a(l- “Z}_{—;—)(o If we were to
reject this idea of v>c¢ as we did with currents, then &% would
not change sign (it wouldn't even exist), and we would not use
the reinterpretation principle of BDS.znWe would be forced to
deal with the negative energies in some other way.

This leads one to consider the possibility of considering
the spacelike four-momentum solutions of the m? © Klein-Gordon.
equation as positive erergy flowing in the direction of p and
negative, 'qurgﬁ flowing forward in time in the (-)p dirsction.:

% Hence, in a certain inertial frame, the energy density can be 0
but we still have a net flow of energys i.e. 1"5”;('0.‘ THs previous-
ly was interpreted as ~° velocity. In the usual interpretation
of E = 0, v =c, apparently no energy is transported because
At = 0, However, with the electric current system analyzed
above, we have net iransport of charge even though the charge
density at intermediate points is always zero, in one inertial
frame., If we reject the single particle superluminal velo-
city interpretation of spacelike four-momentum, then in a frame
in which E. = 0 the velocity is not o2 and the process need not
be instantaneous. Then the duration .of nonzero 5 can be finite
and hennayeifieweeihnbteypred: x&ﬁ:‘es as positive and negative ancrgiss
flowing in opposite direction§, we have net energy transfer.

The present visualization of m'<° Klein-Gordon solutions
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then leads to retention of their negative energy and nonlocal-
izability aspects, which are similar to those of the electric cu
current. The usual reason for rejecting the negative energies
(propagating forward in time) is the instability that arises.
However, analysis of the m'<e Klein-Gordon equation has

shown that the solutions may indeed be nonlocalizable and/or
unstable ([69] Aharonov, Komar and Susskind).

We thus have a picture of energy flow without the necessity
of a net energy density in intermediate regions, similar to the
transport of charge wtthvspacelike electric current.

We need now a conserved quantum number in order to keep
the‘spacelike field from "blowing up®.

The conclusion we may draw is that the negative mass
squared Klein-Gordon equation may describe physical phenomena

without representing superluminal signals.
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C
( Charge Density and Form Factor

We have agsumed that the source is a scalar with velocity
greater than c¢. Both for a ¢ number sourve with prescribed
constant velocity, and for a quantum source free to recoil
upon emission of the 77 particle, there are important differ-
ences as compared with the treatment of ordinary form factors.
The "internal"” state of the tachyon is assumed to be unchanged
by the individual emission process.

Generally, the form factors are assumed to depend on the
invariant quantities which can be formed from the four-momenta
at the vertex v/, p“: k", (6€] Gasiorowicz).

Figure (24) shows a7l exchange between a proton and another
particle. The shaded bubble at the p-Tvertex represents the
proton form factor. Figure (b)) depicts emission of a real pi
particle by a tachyon. In figure (29 pﬂ'and p”'are assumed on
the mass shell. Hence the form factor is a function only of
t = (x)%.siStnce v c, k cannot be on the mass shell. However,
for the situation in which v>c (case b), we may put k on the

mass shell also. Then the form factor would be a function of,
(1)
t= Q) =k =

We see, since this is constant, that the Cherenkov radiation

would not be cut off by the form factor and would lead to a-
divergent energy loéngaﬁie‘Vvolume“ of the mass hyperboloid

for the peon is infinite.

To ddal with this problem, and to see what kind of function

a tachyon form factor would be, we must first analyge the
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( situetion for v« c more carefully.

Sometimes the phrase "invariant function® is used where
the phrase “scalar function” might be employed (see[%j]
Schr8dinger, for example). However, the designation "invariant
function" is also used in a more restricted sense. If we have
a Lorentz transformation[/\ ’ a) such that x* = /]x+a then a

*scalar®” function is one that satisfies:

F &)= F®

That is, the transformed function, evaluated at the transformed

(2)

point, has the same value as the original function at the
original point. Compare this with the concept of an "invariant*
function as used in the following sense:

{ - F(Ax) = Ft9 | 2
That is, the "original® function evaluated at the transformed
point has the same value as it has at the untransformed point,
if the transformation is a homogeneous Lorentz transformation.
In the former case the function F can be arbitrary; F' is
determined by F and the transformation. In the latser case
F can be an arbitrary function of x2 (and sign (x) if x is
timelike) which are the invariants formed from x/, But on
any one branch of the hyperboloid x2 = constant, F is constant.
Well known examples of invariant functions are the functions
A + A"y A yAcy formed from the commutator and other vacuum
expectation values of a “scalar” field qgi]Schweber). To

avoid confusion, we will use "invariant” only in the latter
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( sense, distinguishing it from "scalar",

The form factors for ordinary particles are usually
taken to be "invariant functions” without much comment. We
need to examine this more carefully., These particles are
taken to be "elementary systems" whose states-form a represent-
ation space for an irreducible representation of the inhomo=-
geneous Lorentz group. The mass and épin. (my, 8) label the
particular representation and this determines the kinematic
description of the free, noninteracting particle dgi]Schweber).

We investigate the symmetry of the form factor in the rest
frame of the scalar particle. It is then natural té say that
the form factor will be invariant under the subgroup of the
inhomogeneous Lorentz group which leaves the wave-vector pf‘
invariant, i.e. the little group. In the particle rest frame
we haves

p# = (m,0,0,0)

Therefore, the little group is 0(3)--the group of rotations in
ordinary three dimensional space QZZ)Hamermesh). In general,
the irreducible representations of this little group are denoted
D(j)z we take j = 0 for a scalar particle. The form factor
will therefore have the symmetry of the little group 0(3) if

2 or of k2 only.

it is a function of the invariant F2 = x%4y2+z

For a time varying charge the idea of spherical symmetry
refers only to a measurement of the charge distribution on a
three dimensional hyperplane perpendicular to the time axis in
the rest frame of the "center" of the charge. We may then

require as an additional assumption that it is static and
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{‘ therefore not a function of t.

Tn thigs standard frame the form factor F, by virtue of
its supposed symmetry, has no additional four vectors assoc-
iated with it. The invariant form factor F can then only be
a function of the invariant t = kz. since all other invariants
formed from p’. p”: x” can be written in terms of t = k2 when
(p/)2 = m2 = (p*)2.

If the form factor did not possess this symmetry (0(3))
there would be other intrinsic four vectors..nﬂ. to form
invariants with p”/, p”', k" . F would still be an invariant
function of these however.

If the symmetry in the z direction were broken by some
interaction with an external system we would. find that F,

( would then be a function of x2+y2,z. There would then be an
additional four-vector m*, of which the £ would be a function.
The little group of the free particle 0(3) would then no
longer apply, and the form factfiyould no longer be an invariant
function since an external influence would prowide a preferred
direction. In addition, if the world line were finite;/% (%o hangs)
would have to be multiplied by [6(t-t) - o(t-tzﬂ . The
charge densitiﬁaould still be static for intermediate times.

For ordinary particles where the "in" and “"out" states
can be considered to be asymptotically free, these comments
are irrelevant since the deviation from a true invariant
function is infinitesimal. We only make these distinctions
for later comparison with the form factor and charge density

of a tachyon whose world line is finite.
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We now proceed to investigate the dependence of the
tachyon form factor on the variables x” . First we look at
the free (infinitely long world line) spin 0 tachyon. This is
the only finite dimensional unitary representation of the
inhomogeneous Lorentz group for spacelike four-momentum
Q%Q]Shirokov). The standard frame for investigating the little
group in this case is one in which the energy is zeros

p“ = (0;0,0,m)

The little group is the subgroup which leaves p/ invariant.
It is therefore the non-compact group S0(2,1) of rotations in
pseudo~-euclidian space with two space (x,y) and one time
coordinate. It contains rotations about the z axis and Lorentz
boost transformations in the x-y plane. That the latter
leaves p™ invariant is readily verified by calculating the
transformed energy or momentum for a boost ALz,

- The little group leaves invariant the form ()% - (x)2 - (y)2
and,ko2 - ka - kyz. Corresponding to the condition which
picked out spacelike three-planes perpendicular to the t axis
for ordinary particles--as the spaces in which £ displayed its
symmetry--is the following condition: for tachyons. In the
standard frame in which E,. = 0 the world line of the tachyon is
parallel to the z axis. We definesF; by first studying its
values,on'the three-planes perpendicuiar to the z axis, planes
which are left invariant under the action of the little group.
The 0 in F, now refers to the 0 energy in the standard frame.

In general, F, may be a function of z.

( The symmetry of the little group is defined only in the
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three surface perpendicular to 21 i.e. it consists of
rotations about Z and boosts in the x-y plane.
S0(2,1) symmetry of F, only imposes the forms:
F,(X,¥r2,t) = f(i-‘-;g&y; 2| e /—:”(,&/% 3—(@:. _gx:/e;‘),/%)
just as 0(3) imposed the forms.
P, () = FOoyeie) or F(AD=F(E54)
We take it as given that the form factor of a free
tachyon field is an invariant function of the tachyon para-
meters. The cenc{vSzdn that the form factor for tachyons is
an invariant function only of t = k2 now follows from the
observation that F, picks out no preferred direction in the
three-plane perpendicular to Z. The z direction itself (the
direction of the tachyon velocity) doesn't. provide an addition-
( al four-yector since it is just proportional to p/.
' . Therefore, for Cherenkov radiation fofx¥+= m”? the form
factor is a constant.
. For the Fourier transform of the c-number charge distrib-

ution:/PQky. the constancy is seen in another way. In general
- PR
since (K*)% = (¥A:%
02 ° 2 %2 2 -2 2
/éo_/kx—%? :/&o—/k +/A‘£
where the k's refer to the standara inertial frame. In this
frame the tachyon velocity is infinite. If the k” refer to a
Cherenkov radiatéd pi particle then we have from Chapter IV,
equation (5), for the c number nonrecoiling case:
k,= szr

Hence
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(_: ' kz = ko/Vrz):f!:o
and
k2 - k2 - k2 = (1?2

That is, the pi particle is emitted perpendicular to the z

axis. Therefore
/))(;£47.=:/Q (4£;>£:;f£7:.1%;>fi/%[JZé)Jf>’j/ﬁ,fn;)a

So we see that both the tachyon charge densitg/Q(K) or

form factor F;(k’) are constant for the case of Cherenkov

radiation where t = k2 = Wz. fz = 0, This suggests the
following possibilitiess
1) F, () evaluated at m,2 is finite.,. Therefore F Crp)
( provides no cut off to the radiation leading to divergent
Cherenkov energy loss. This implies either that tachyons
cannot exist or that they cannot interact in this way.

2 but finite at some

2) F, is zero when evaluated &t m_
other values of t = kz. Hence there is no, Cherenkov radiation
at.all hut the tachyon may interact with other particles
through .exchange of virtual 77%.

3) The analysis of the form factor with noncompact little
group SQ(2,1) has presented us with another reason to believe
there ig no sense in considering a free tachyon field even as
a first approximation.

To proceed further we take the third point of view and

argue that the symmetry of the little group is broken by the

interactions and in particular, by the finite world line of
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{ the tachyon. According to the arguments based on the little
' group we found: |
F_(X,¥,2,t) = Fo(tz-xz-yz.z)
and F (k") = F, (kcsz,,z- ky? k)

We assume (analogously with the time dependence of the
ordinary particle created and destroyed at t, and tz) that the
tachyon form factor does not take on any additional dependence
on z in between z, and zp, the end points of its world line.
It seems reasonable to assume that the source and sink of the
tachyon.are at least of finite and probably of microscopic
extent in the x-y plane and their motion defines an average
inertial frame in the x-y plane. Hence, the symmetry due to
the freedom of Lorentz transformations in the x-y plane is

( lost by the events of creation and annihilation. We assume
that the rotational symmetry about the z axis is retained.
Hence the form factor (énd the charge distribution) in the
gtandard frame =$: of the form:

, ‘ F (x%4y2,t) 6 (2zq,2p) »
where 0(zy,25) = [6(z~2) -9(2-228 :
Because of the presence of a finite source and sink we have
thus lost the noncompactness. To obtain the form factor in any

other frame in which the tachyon has velocity v, we use the

scalar property of F, . '
 E=sl) L

-~ , A
To make a Lorentz transformation in the z direction ( 2 I/ V¢ )

from velocity v, to infinite tachyon velocity and 0 energy, use:
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Therefore

{ -
/~(;4;§ Jve— 1
and this gives us the Lorentz boost to the standard frame:

R R L A (R I N ¢
v/
Hence, using (¢), (5) and (¢):

F ()= F (x4 —ér”’l‘)}%—/) O (¢, )

we have assumed that the transform of the @ function in z

can be replaced by a 6 function in (t). This implies a certain

localizability of F (following from that &E the source and sink).
( The term (z-vyt) does show the dependence one would expect for

an object traveling along the.z axis with velocity v.

We now see that the noncompact parts of the tachyon form

factor are no longer present. They have been avoided beaause

of the necessity of having at the ends of the tachyon worldline

a tachyon source and sink of finite spatial extent which are

not invariant under boosts in the x-y plane.
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(w Appendix D

Beta ecay
Inner Bremsstrahlun Type Radiation
——— —————— e

Massive Field Case

In Chapter IV we considered the situation in which a t
tachyon is created at a time -T/2 and then destroyed at T/2,
displaced by vT along the z direction. No account was taken
of the existence of the charge on the source and sink before
and after the tachyon woerld (/ne.

More realistic perhaps, is the situation where the charge
exists at rest before the tachyon is created and again dis-

placed by vT after the tachyon is absorbed: k.e. -
PO t <=7

‘ — ___ (x
( j(rlf) - /) /2)
) —y = _
/P(X)JJZAUV)Q ; E2

The charge is adiabatically switched on and off at t co ¢q

handle convergence problems in the integrals.

We then have:

- T a . o X
¢M - %l} + éz) + %g}

oA (F- ‘)
/ 322 , on, - e (r)
gé(rtj —",{],§%9;J¢q4.c; A (& t:) //9
e e e w4 F) f@)
SOMCHN
9%)01‘7 —_— ezur{bmw qv -5 ’
L-k‘V‘ —t'k / _4f - 't
g L e
N -t A
j e /3(4%) e bc,m_ w (T -‘t)
@) cd
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( Hence, combining ¢')Q; p%) and picking out the coefficient
- W
of —_—776.‘11*‘“’ ags before:
)% QUQ/‘ -(U/JZ

(13)

afr: er/’( 1) m\ Q{;& jj;ﬁ W

] C T gt T
C::j /f hJ ?'»a /4
[Ty QA
Combining the last two terms we obtaint (multiply first term
jS'k%'u-'fz_-(\'k%v‘;) u) ﬁf I
v ‘iz € sl
a X _ T B (,;(L/ﬁ?ﬁm(w 4% [z [V g
4w T G, S /3 (tm Ay Ere)

by

a e o
Hence \ p
: ‘ P, . ~1/ (é;))
™ = (o - —O«T*Co“fe%‘r%)"ﬁ”"zzlr/l ; (/57
( * L )

Note that if v<&c there is no pole and no Cherenkov radiation.
The second term never has a pole if mr_# 0. The second term
is the amplitude aszsociated with destroying a charge at Z=0,
t= -T/2, and creating it again at 2 = vT, t = T/2.

From (/5) we see that (assumg/% f(f) 80 ‘k)ls real)

- [ [l - 2 (”f)(")@”*“‘t "/ (/6)

5 [j (*m>f u)}wz“ A‘Wc&’l‘ﬁ?

27) g Q‘)«L -2

v /2
Hence, we see a portion which grows in tim (T), i.e. ICLC/ ’

which gives the Cherenkov radiation. The remaining part is
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(" associated with creating and then destroying the tachyon while
also destroying and creating the charge at rest. This is
analogous to radiation emitted during beta decay (232] Jackson)

when an electron is created already travelling at an appreciable

velocity.
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( Appendix F

Further Analysis of Generaligzed Cherenkov Radiation
From € Number Source

We calculate the interpolating field rather than the "out"”
field in order to see both the radiated and "virtual" particles
associated with a superluminal source. ¢p=¢" 1 7

¢(F;i~): ¢/(’;\”7t) "f';fq{-{-/cfj?’ AA‘ZZth:f-t’//’(F,’tﬁ (1)

where ( [62] Henley and Thirring):

A1) = #F%e%( r:ﬂ )ot) (o)

Now, using the result for /0 in equation (IV-21) and switching
+ot
)

/D on adiabatically ( e
LJI. (Y‘“I")"f*di‘

t
( Fo=pTro + %ﬂ;f,;f" e S (t-4f (sb-rg

Performing the integration over r*® as in (IV):

Ty ,&v?f-d‘i
3 q‘ / W
prt) = Bhy +9fj cjmf -———/»w (-t))s -1 € f“»"a )

The integration over t' is - byt ,4 o 1L,
s (LAY
fd+ E— Lw’k(i t)”l“;l Vf’,‘di- C—-(. U_A( ) 2
-~ 0o 24

_._('I'A'l/f + l j
- ?—”‘— td/ﬂ-.H,_ NI, %*«A{V‘-c\% &

Following Henley and Thirring, we write the result in a form

— which allows us to pick out ak"' AnD ) except that here the
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time dependence is not that of a free field so we seek ak(t).
Make thetchange of variable k—> — k in the first factor of
(5) and in the other terms which multiply it in equation (4).
Also assume/fﬁ)is real so ?hat/ﬂé%) =>fﬁﬂ9 . Then, compar-
ing the two terms ( plus ¢ ) with the standard forms

¢ -(-4
By —Uvs/zfc!/ée %a L+ a, (6)
(ZT“QDOQ
we obtain: .
A\; 'l“ --L/lr. U‘i‘ Jz <
af=age re tgplhly M- (7)

TG o] (A=

+ 1 -ch‘f‘ * ‘
L= e 4 (1) (72)

14
To geperate the"virtual and created particles, the latter

having the free field time dependence, use the relation:

= Pt 4 o § (xx) (8)

therefore from (7) and (8)

\ _Ci,wd" f ‘
oufy—q;&u = p /’ (’I"‘/é%?) m) (9)

Q?"Jﬁyj G’ 2u :]"L
FRT [‘%‘J‘% ”\) Q.L;}(”"‘/ k?/ ‘)T

S %:{'A

That the second term in equation (9) gives the real, created
particles is seen by the time dependence or by the presence of
the delta function, which we saw in (IV-30) will give a linear

. growth in time of the number, when it is squared.
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(; However, there is another interesting aspect of the re-
lation between real and‘birtuallparticles which equation (9)
demonstrates. The second term as a factor of i which the first
term lacks. We would like the total number of particles to
equal the number of‘Qirtuals”plus the number of real particles
so that it makes sense to distinguish between them. But we

also want the amplitudes to be additive. So if we write:

by 0B,

ToTAL Mpirews & 4 Mrear €

and require

Q::Qr = N’ro’ML = '/)vn‘*tw‘?L

then we finds
4= 4&F

f' This serves as an additional justification for considering

+ nreal

N

only the second term in equation (9) as representing the created
particles, gince the first term differs by'w72 in phase. The
first term %s the reactive part, the second term the “resonance”
part of théxgésponse to the superluminal object.

Using the relation for‘the square of a delta function and
equation (9) above, we arrive at equation (IV-31) for dny/dt.

The total number of'Qirtualyparticles is, from equation

(7) and (7a)s /s .
fd2un j’“":jef T b, %) E Doy (10)

@’ 24, [Q.J{JQ@% s

Where, in equation (10), we retain the factors of «° in order

to give a means of dealing with the square of a Cauchy principal
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( value. Now azssume cylindrical symmetry, and change the
. dw _ Ay
variables from k,, k,, to«, , k, which yieldss ( SE2° o )

577

Sm = 2TA ddy d ke = 27 ¢, deg kg

(-4

Tl{is is rather obvious but can also be verified by computing
the Jacobian. |

o virtmt cluid/hz / ()// )(w - Ay ) ()
W fre i @k +T

Since w;:.f:z-f /L;—f 7*17: j A20=> B4 Z ™ | Note that if

we first set o = 0 the number of virtual particlss for v Ze

diverges. If however, we first assume thaj: f is approximately
( constant up to an L’“’max and k, poy and esgsentially zero beyond,

we can investigate further the dependence on X ., Assume <

is small compared with k, p. « Then a little algebra trans-

forms the integral over k s K3ny
J*kzmxﬁ—(u __1_) dfa // (’J"'- a/) (12)
2@) "’/‘t”j+°l Faorg ZZA Jkt/%()—”:{

-— __L~ jix Yo~ XUD
o) %o~ ¥ 1

The limits on the integral may be taken to be approximately

Q'hﬂ)n

* oo by our assumption about A . The integral over &, in

equation (11) now simplifies since the ) factors drop out
after the integration from - w-»+ c© over /% . We have then
approximately:
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C N e g () A S 6 (W) T (13)
The constant A contains the (finite) value of the integral
over ¥, and the factors of v, etc. By the term /& we see
that the number of 'virtuals “for a Cherenkov radiating parti-
cle (v>c) grows linearly in time, as does the number of real
particles as found in (IV-31). Note that this is true for
™, #° in general, assuming//3 contains the requisite Fourier
components.

In order to interpret this, look at equation (11) in the
case v = 0, taking care to restore factors of %5?1-9/“3; .
In the case W, *° there is no singularity for Ssr o=c since

{_ &, & "y . However, for g, =c the singularity that arises
is the well known infrared catastrophe appearing here in the
switching on of the charge rather than in bremsstrahlung.

From equation (11) one sees that the divergence is of the form
dk/k as usual.

When we retain the factor of & the growth of AViFtual oan
be seen in k space to be owing to the behaviour of the Fourief
transform of the time dependenﬁ/D » which approaches resoaance
( w=0) as t e . In ordinary space the growth of pVirtual

the retardat/on of
is associated with,the field, ¢ being zero for r >ct =c¢/i
and increasing for r < ct because of the switching on of the
charge.

In figure (13) we compare the situation to that of an un- o—

damped harmonic oscillator which is driven at various frequen-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/37

g\’ cies. The condition «, = kv corresponds to driving on
resnnance, and for a harmonic oscillator leads to an amplitude
growing linearly in time. The other, neighboring frequencies
are not on resonance, but are so close that they also give
rise to large amplitudes. Also, the closer to resonance the
longer it would take to reach the maximum amplitudes in fact,
it would be proportional to the inverse of the beat fregquency
E{I:f « The general solution for an undamp@ed driven

Harmonic Oscillator, if the resonance frequency is denoted by

(), and the driving force has frequency //zi"f, iss

. ~ (14)
X= Ccordy 4D pmtdyt 1+ =5 MQ‘%UT"’@
gl
( where C., D, {3 relate to initial conditionss and if 4= hy V™,
i.e. on resonancet
(15)

Cemayt +danlt + .’fi-—t-—/y"‘@ht’*(g)

x= 'LWH.o,w-{c_

Note the 7772 phase difference in the driven term and compare our
previous comments on the essential difference between "reactive®
and "resonant" response. Also note in this case that the
"catastrophe” exists at frequencies approaching the resonant
frequency. (equation (14))

Hence we view the “Cherenkov catastrophe” of a divergent
(if «=o ) or linearly increasing (if o<~;L_L is small but finite)
number of virtual particles as due to the infrared catastrophe

"transformed” to superlight velocity. (i.e., if v = 0 the pole
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is at ¢ = 0. This transforms for v>c to a pole at ‘%:%V ,
But, whereas there is no infrared catastrophe for mﬂ_ﬂ 0 and

v =0, we do find it for any mif v.) e. Furthermore, the super-
luminal case would not be subject to the ﬁsual interpretation

of the infrared divergence because the energy of the diverging
number of virtual quanta does noet go to zero. A

In ordinary space these diverging “"virtmal " quanta are
apparently associated with the parts of the field within the
Cherenkov cone which are very near the shock cone.

Although we have distinguished between real and “virtual”
quanta here, the fact that they are arbitrarily close to the
mass shell indicates that there is no clear cut difference
between them other than the phase factor that‘we ndted.

We will now show that, depgnding on how the source is‘
switched qn‘and off, they may or may not.contribute to the
Cherenkov radiation actually detectable. For a realistic
switching we will see that they do in fact contribute: i.e. for
sudden switching we show that the "virtuals® are effectively
real.

To further investigate the details of generalized Cherenkov
radiation, we will compare a number of different ways of
switching on the charge for different tachyon motions. We will
calculate the asymptotic fields generated by these and refer
to the above analysis of the interpolating field for comparison.

. First, we adiabaticglly switch on the charge at rest until
t = 0 and then jump to v)> ¢ and adiabatically switch it off.
{ Note that we use different switching rates.
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Q/A ) ﬁm (LJA‘i‘d) 677)3&@ [@J 19_4 E j (16) .
in order for the second term to give the same Cherenkov rate
asi:(IV) if we take -£ =7  then the ZR’-L)] term must contrib-
ute an amount equal to the [S(x)] term in (16).

Compare equation (7s&) where we adkabatically switched on
4 the tachyon charge from -t and calculated ?g(in’cerpolating field)
We see that except for a sign change, the second termpf (16) is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1T

( the same as the term in 7= TaalEEE
In 7x the two parts of a, i.e. the §& and /%{/ parts
don't necessarily have the same time dependence. Here we see
that if we switched off the source at t = 0, the virtuals,

i.e. Péé) term, would take on the free field time dependence

- "U,ﬁ_t

e and appear as created particles.

¢a‘f

To check this we now calculate for a v >c particle

adiabatically switched on from - <o and then destroyed at O.
Using resultsfrom above for etc. Y
$°T [k o g Rt
@F ==~ (.L) 737 €  asmnu), (t- t/

~deg 4

o (i
B i?z)? g, /:T/)( - /;- hyr= it i‘\k ““]
Hences o ) i
| - Ephg) funond
: A G )““‘
2 g = () L D k)

Gr? 2 g (g, A+ 2207
This is seen to be equal to the sum of what we called the real

and the uviz"i:ual"pxa::"ticle:s (Compare (10)).

Hence, #e conclude, since the ®"virtuals" 4%
are so close to the mass shell and also grow with time, that
they contribute to the measured Cherenkov radiation as well.
This &8s an interesting point since a) the meaning of real and
virtual is seen not to be clearly distinct here, and since b)
'if we adiabatically alse switched the charge on and then off
the reactive part would have cencelled out if <¥==/3 ; i.e.
if we had equal r tes of switching. To see this, note:
| j vji“x’/: ot
( A oo ‘ ( S T (W)=

+@J°¢

(b
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(_ This corresponds to the "resonant" term in the previous equa-
| tion. Hence, the "reactkve" part which gave rise to the
Principal Value term previously (df. equation (10)), is seen
to be damped out if the rate of switching on equals the rate of
switching off. Note that if the rates were different, we would
not get this cancellation, (Compare H.D. analog). The factor
of 24 is needed here since this time of radiation is twice as

long.
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( Appendix F

Magssive Cherenkov Radiation
from a Thin Spherical Shell

For a thin spherical shell of radius /. the generalized

charge density isi
(r- rc)

/3('”) = //7rr‘

Hence the Fourier transform is:

A L’L ot &
dvr
— Tanedoe § (r- r°)r
ph= ﬂref) : e

_ i AT
.1,

{ Substituting this in eqaatian 1V (36) we have the integral:

f/é Ak e

r)“

X 2 s2 (3
b= [T = [k

Although the value of the integral is affected for finite k'

wheres

by the presence of nonzero », , it 1s seen that for large k,
the integral is logarithmically divergent. This agrees with
Sommerfeld®s divergent energy loss for E-M radiation.

de -
L
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Appendix G

Electromagnetic Cherenkov Radiation for Hyperbolic Motion

The angle at which Cherenkov radiation is emitted has
been derived for constant velocity of the source. In a medium
it has been shown that the quantized elecgromagnetic field
gives rise to a quantum correction to the angle which is a
function of frequency. We pointed out however, that in a
vacuum where n = 1 and v >»c this correction is not ?resent.
This is due,essentially, to the fact that v,= 1 and hence,
k= (¢, %= ). But,there is still recoil since h # 0. We
have shown that due to this recoil the tachyon undergoes
hyperbolic motion and accelerates to %o velocity.

In order to see what effect this acceleration has on
the direction of the Cherenkov radiation, we seek the form of
the wave front. For constant velocity the construction is
simple and turns out to be a straight line ( [58]Jelley).

The Huygens construction (léé]Courant & Hilbert) yields the
angle cos @ = c/v, .

For hyperbolic motion the situation is complicated by
the acceleration. In order to cope with this we make use of
( [61] Widder) Leibnitz's method for calculating the envelope of
a family of curves. If a member of the family is given by
the equation (with parameter c).

¢ (29, J)=°
Then the envelope is found by eliminating the parameter c

between equation (1) and:

}%:o
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In the present case the curves are cirules centered on

the retarded position of the tachyon on the z axis. The

i

radii correspond to the distance light would have traveled in
the elapsed time. See figure 14,

We now seek the shape of the envelope at the time at which
the particle is at z = 0, y = 0, x = 0 and has velocity equal to
infinity. In Chapter III we derived the equation for (tachyonic)
hyperbolic motion.

2= _JEFT and %%:-_L_ —*

In order to indicate the method, we assume that the motion is

(3)

rectilinear. One can also calculate the envelope for a time
at which the tachyon energy is very high. We are looking at a
two dimensional crossection (z,y plane) with the particle

% approaching the origin from the negative z axis. From equation
(3) we see that the tachyon reaches the origin and infinite
velocity at t = -g'i, which is the time at which we seek the
envelope. The equation for the family of circles centered
about 2z =-Jt2-g'2 » ¥ = 0 and with radius equal to c(t+g'1)

-1

(so at t = =g = the radius = 0) is

C(eriE) vy < trg)

The parameter of this family is t, hence ;%gé=*> from (2)

(4)

yields
J—%—Z::—g—.a—(2+ﬂﬁl)‘(f‘*2-)=° )

Eliminating t between these two equations with some algebra

(remember iz is negative) yields the equation of the envelope:

(figure 14) ( + —)1_,‘_ 2_‘=9~2
/E}’ ¢ (6)
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This is a half circle with radius g'1 and center at (z,y) = (ofg~1)
In three dimensions the two half circles should be rotated about the

( 2z axis to sweep out the surface of the wave front. It is seen in
equation (6) that the same result holds for positive z as well,
and 2z = 0 is the point at which the two tachyons annihilate. The
figure shows that the Cherenkov radiation is focused (in three

1

dimensions) at a ring of radius g~ centered about z = 0 in the

X-y plane.
Looking at aros&tion z(t) at an arbitrary time t (see geo-

metric construction in figure (14). We see that (use equation (3))1

2 < (7)
Cov® = Qg — VR

Hence, we see that, at least for hyperbolic motion the direction
of radiation is given by the usual Cherenkov relation at each
instant. From the point of view of the four-momentum conservation
{ derivation in (III), this seems reasonable.

For any other time one could also solve for the envelope
(i.e. when v< ) in the same manner. Also, if z(t) is any other
function of time written in a tractable form, equations (1) and
(2) may be solvable.

Por ordinary Cherenkov radiation in a medium with ¢ >v)> ¢/n
undergoing ordinary hyperbolic motion the relevant equations are:

(assume slowing down through c¢/n)
21“_l__l= OC-‘L (8)
* 2 x kS
(2 +JP—+&"‘) 3} = ("5‘) ¢
. When one solves for the envelope of Cherenkov radiation the
i -2° ) 1—#CL‘L(Q>L'_ o

result is a hyperbola -71:6293 7 ) =

For Cherenkov radiation of a massive field use the phase
velocity for the 7 field to obtain the wave front of each k

component.
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Motion of a Tachyon in a Constant
Maggetic or Electric Fleld

~

Magnetic Field:

The motion of a tachyon in a constant magnetic or electric
field is calculated. The tachyon is treated as a classical
particle. Although it is assumed to be acted upon by the
usual electric or magnetic force appropriate to a particle of
charge e and velocity v,, we assume for this calculation that
there is no Cherenkov radiation.

We first treat the case of a magnetic field H which is

along the 2z axis.

1P -;z%.fy and ,f5= ‘Z:?i

A
-

¢t Jdt <
or . .
U, = WV = - = o
X 4 )’Uja LS ) _v"&
where: w o= e_C/L/
-
ence : . N
fer £ (gin)= -l (5 +7)
0-H<‘ Sv[.\"iﬂ; ZA/S! | _‘(‘ (ut—l-d)
ity = U, € or « U, =V, Corbot )
l:” k)l'\ltll_‘ ’Ugt_i ’1);;“#”:?1‘
; K= Xt ¥ o (9F4%) | =4 rewlotts)
) and:? U | e
ec H
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(' This relation is seen to be the same as that for an erdinary
particle in a magnetic field ([Bg]Landau and Lifshitz, here-
after denoted L & L). That this should be true is indicated
by our equation (9) from Chapter III %§§;=é%;: ('7-“25?)'
Note that for a magnetic force the'second term will drop out
since Fee¥ x H. |

For an electric field the situation has some new features,

Eiectric Field:
We assume the electric field E is constant and in the x
direction. The motion is in a plane which we take to be the

x-y plane. The equations of motion for the tachyon are:

P
L

P=ec o7

P = e+l P50 = 24

The tachyon kinetic energy is:

T = \/Z{{x-fesﬁzvtﬁ;-"”? (1)

We see from this that there are a number of different cases,

Hence:

depending on the tachyon parameters e, p,. If ”%z‘ is

greater than mrthen“T'will always be greater than zero and the
motion will be similar to that of an ordinary particle; lfkngg’ﬂr
leads to new sol¢tions.

The tachyon velocity iqﬁn'the x<JcrecZ/°4:
dx o= 7(’°K+eEi_'

7, = Pxct
’ﬂ T fé’:— = —_——T
(ot B Aoy

( Therefore:

T _p, +eEt
X = [f* ‘\’P/“—“1
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( Hencet

z 2 ! (2
X = 'e_‘:é\]—'(fox'}esi‘)-fﬁ}‘w \ )
Similarly we find for y:

b= -

i

oA
J-————'\
ands
fent O .
L d U f"?c <3)

::jcli {0 ° R
N AN TS

The form of the solution to this integral will depend on

the relative magnitude of 4%7 / and m.

case a) /,/70? //\ 1

Set /)o;-mla;l" , then (3) becomes:

| Clﬁ/‘f_f___ fzc M CLE
oy — — L [ oﬂ"
070 "5 ) e

Combining (2) and (4) to eliminate t we obtains

e,éf °?571f

o~
U
S

This is a catenary which is of the same form found for
ordinary particles ([62]L & L p. 58)

We now look at the case for which /703 [< m ’

case b)

( The solution for x as a function of t is still given by
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Ny [ N
equation (2). To solve for y substitute: y1-7@;==\f in

equation (3)

fcﬁ et

9/ ::‘él—E' A‘J/y) If)a
Hence

_ c j’—l/ .fe[:'{ (6)
397 B et (T

and combining with equation (2) in order to eliminate t:

;}——:f_’_‘ A) =
X = 3/)/,4,&(7%)

(7)

(" Now if -,,(7:7,1 , case c¢), we find from (2)
> s ct
L 4

and from (3):
Hence:

Note in equation (2) that for case a) (/}fﬁj }>’”) there
exists a real solefion for x For all times t. However for
case b) (/—/{,{7/(}1/) there exists no solvlion after a certain
time if /’x and e have opposite signs. This corresponds to the
necessity of having an oppositely charged antitachyon annihilate

the tachyon when the kinetic energy T becomes zero. See
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{: figure (15a). We also see from equation (2) in case b) that
there may exist no solahion before a certain time if ;o and
e have the same sign, but that x then goes to plus or minus
infinity as t >« . See figure 15b. Equation (7) describes
both of these situations.

Figure 15b shows that a uniform electric field can create
T-7r pairs. This is possible because there is no minimum
energy required; they both have zero energy. Charge, energy
and any other quantum number would be conserved. This
instability of the tachydn vacuum in an electric field
provides another reason for believing that tachyons cannot

exist as free particles.

SN
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Footnotes

1. A number of the early papers on charges with super-
light velocity are inclgded in the extensive tachyon biblio-
graphy compiled by Dr. Eleanor Maas of Swarthmore College
for Dr. Bilaniuk, which they kindly made available to me;

included are [E)lﬂ Sommerfeld, [89] Thomson, [92] Heaviside.

2. We find the asymptotic expansion@él Whittaker & Watson)
of ‘f:.(f»*) by integrating by parts repeatedly. For conven-

ience we can assume 7(‘ (;‘) to be spherically symmetric.
Y= JetEWIA _ [ ihen
g T e Ity 27Tz/ﬂc1@c'~)¢//{‘
,(& -m"

In this section only we take }‘;/E/k .

=N = g ke ) AR
\V@) f er [ emr

4 4@,4,11) ’H&)//‘QWL

- Qj ‘L /“L\"“M\

If f(“) goes to zero at least as fast as )/k.‘—»“ dc;Es. then

at leastas -2

' decreases,fast asthan r~°. The last integral goes to
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zero for f-ﬁPOO » by the Riemann-Lebesgue lemmasz]Whittaker

& Watson) if we assume k) falls off sufficiently fast for
large k to satisfy the conditions of the lemma.

If we integrate the second term by parts again we obtain:
s () ()it
S
We see that the first term vanlshes if f(k) has a zero at
least of the order 3/2 at k=m. The second term falls of£¢
faster than r~3 since the integral goes to 0 as r—— oo
(the Riemann-Lebesgue lemma). ‘
This procedure could be repeated indefinitely depending

on how high the order of the zero at k=m is assumed to be.

By suitably choosing f{k) we see that the associated Y

Talls off for large r as rapidly as desired.

3. In Chapter III we found the condition for a sign
change of/;ggial component of the acceleration of a tachyon
produced by a central field of force. . The relation of these
considerations to Cherenkov radiation and the dynamics which
accompany it is shown in this footnote. 1In 1963 G. M.
Volkoff ([B3]Volkoff), publicized the fact that the electric
field within the Cherenkov cone of a particle exceeding the
velocity of light in a nondispersive medium points towards
the positively charged particle. Hence a static positive
charge behind the Cherenkov cone would experience a force

and acceleration towards the radiating positive particle,

These two counter-intuitive direction reversals are seen to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7%

complementary and to occur for the same conditions on cos 6.

)

Two positively charged particles, one moving faster than

light, the other slower, begin to attract each other when the

rest particle falls within the Cherenkov cone of the tachyon.
For the case of a particle emitting electromagnetic

Cherenkov radiation in a vacuum, Sommerfeld in 1904 found a

mysterious speeding up produced by the radiation reaction

force.

4, . Note that the reinterpretation principle doesn't
change any of the physics of tachyons, it only changes the
labels we attach to things. In particular. this principle
cannot help us with the fact that the Lorentz covariant

{j generator of time translations (usually called the energy)

is unbounded below.
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